The outbreak of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) triggered the rapid and successful development of vaccines to help mitigate the effect of COVID-19 and circulation of the virus. Vaccine efficacy is often defined as capacity of vaccines to prevent (severe) disease. However, the efficacy to prevent transmission or infectiousness is equally important at a population level. This is not routinely assessed in clinical trials. Preclinical vaccine trials provide a wealth of information about the presence and persistence of viruses in different anatomical sites. We systematically reviewed all available preclinical SARS-CoV-2 candidate vaccine studies where non-human primates were challenged after vaccination (PROSPERO registration: CRD42021231199). We extracted the underlying data, and recalculated the reduction in viral shedding. We summarized the efficacy of  vaccines to reduce viral RNA shedding after challenge by standardizing and stratifying the results by different anatomical sites and diagnostic methods. We considered shedding of viral RNA as a proxy measure for infectiousness. We found a marked heterogeneity between the studies in the experimental design and the assessment of the outcomes. The best performing vaccine candidate per study caused only low (6 out of 12 studies), or moderate (5 out of 12) reduction of viral genomic RNA, and low (5 out of 11 studies) or moderate (3 out of 11 studies) reduction of subgenomic RNA in the upper respiratory tract, as assessed with nasal samples. Since most of the tested vaccines only triggered a low or moderate reduction of viral RNA in the upper respiratory tract, we need to consider that most SARS-CoV-2 vaccines that protect against disease might not fully protect against infectiousness and vaccinated individuals might still contribute to SARS-CoV-2 transmission. Careful assessment of secondary attack rates from vaccinated individuals is warranted. Standardization in design and reporting of preclinical trials is necessary.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446071PMC
http://dx.doi.org/10.12688/openreseurope.14375.1DOI Listing

Publication Analysis

Top Keywords

reduction viral
12
viral rna
12
sars-cov-2 vaccines
8
anatomical sites
8
low studies
8
studies moderate
8
moderate reduction
8
rna upper
8
upper respiratory
8
respiratory tract
8

Similar Publications

Gammaherpesviruses are oncogenic pathogens that establish lifelong infections. There are no FDA-approved vaccines against Epstein-Barr virus or Kaposi sarcoma herpesvirus. Murine gammaherpesvirus-68 (MHV68) infection of mice provides a system for investigating of gammaherpesvirus pathogenesis and testing vaccine strategies.

View Article and Find Full Text PDF

Background: The COVID-19 pandemic highlighted the need for improved infectious aerosol concentrations through interventions that reduce the transmission of airborne infections. The aims of this review were to map the existing literature on interventions used to improve infectious aerosol concentrations in hospitals and understand challenges in their implementation.

Methods: We reviewed peer-reviewed articles identified on three databases, MEDLINE, Web of Science, and the Cochrane Library from inception to July 2024.

View Article and Find Full Text PDF

Middle East respiratory syndrome coronavirus (MERS-CoV) is an important zoonotic pathogen. The aim of this paper is to report one polymerase chain reaction (PCR)-positive case of MERS-CoV in a 27-year-old man who was involved in a nationwide longitudinal surveillance study of certain zoonotic diseases in Jordan including MERS-CoV. Whole-blood and nasal swab samples were collected from the man and five camels in the vicinity of his living area.

View Article and Find Full Text PDF

Enterococcus species, natural inhabitants of the human gut, have become major causes of life-threatening bloodstream infections (BSIs) and the third most frequent cause of hospital-acquired bacteremia. The rise of high-level gentamicin resistance (HLGR) in enterococcal isolates complicates treatment and revives bacteriophage therapy. This study isolated and identified forty E.

View Article and Find Full Text PDF

Multiple porcine reproductive and respiratory syndrome virus (PRRSV) subtypes coinfect numerous pig farms in China, and commercial PRRSV vaccines offer limited cross-protection against heterologous strains. Our previous research confirmed that a PRRSV lineage 1 branch attenuated live vaccine (SD-R) provides cross-protection against HP-PRRSV, NADC30-like PRRSV and NADC34-like PRRSV. HP-PRRSV has undergone significant genetic variation following nearly two decades of evolution and has transformed into a subtype referred to as HP-like PRRSV, which also exhibits high pathogenicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!