Optoelectronic device characterization requires to probe the electrical transport changes upon illumination with light of different incident powers, wavelengths, and modulation frequencies. This task is typically performed using laser-based or lamp + monochromator-based light sources, that result complex to use and costly to implement. Here, we describe the use of multimode fiber-coupled light-emitting diodes (LEDs) as a simple, low-cost alternative to more conventional light sources, and demonstrate their capabilities by extracting the main figures of merit of optoelectronic devices based on monolayer MoS , i.e. optical absorption edge, photoresponsivity, response time and detectivity. The described light sources represent an excellent alternative for performing optoelectronic characterization experiments on a limited budget.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10446081 | PMC |
http://dx.doi.org/10.12688/openreseurope.14018.2 | DOI Listing |
Adv Mater
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou, Jiangsu, 225002, P. R. China.
MXenes, have been considered as a new generation anode material in lithium-ion batteries for lower lithium-ion diffusion barriers and superior conductivity. Unfortunately, their structures are prone to aggregation and stacking, hindering further shuttle of lithium ions and electrons, resulting in lower discharge capacity. Therefore, the introduction of interlayer spacers for the preparation of MXene-based hybrids has attracted much attention.
View Article and Find Full Text PDFLuminescence
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt.
Herein, highly fluorescent sulfur and nitrogen co-doped carbon dots (N, S-CDs) had been employed as a fluorescent probe to analyze Cu in drinking water. The biogenic creatinine is known to form a stable complex with Cu; hence, it was rationally selected as a bioinspired nitrogen substrate for the first time to enhance N, S-CDs selectivity towards Cu. Moreover, the literature was surveyed to guide the selection of sulfur and carbon sources to optimize N, S-CDs quantum yield (QY), so thiourea and disodium edetate are co-carbonized with biogenic creatinine at 270°C for 40 min and characterized using different techniques.
View Article and Find Full Text PDFNat Commun
January 2025
Physik-Institut, Universität Zürich, Zürich, Switzerland.
Light Sci Appl
January 2025
Department of Physics, University of Ottawa, Ottawa, ON, K1N 6N5, Canada.
Graphene has unique properties paving the way for groundbreaking future applications. Its large optical nonlinearity and ease of integration in devices notably makes it an ideal candidate to become a key component for all-optical switching and frequency conversion applications. In the terahertz (THz) region, various approaches have been independently demonstrated to optimize the nonlinear effects in graphene, addressing a critical limitation arising from the atomically thin interaction length.
View Article and Find Full Text PDFJ Am Chem Soc
January 2025
Engineering Research Center of Advanced Rare-Earth Materials of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing 100084, China.
Substituting the molecular metal complexes used in the industrial olefin hydroformylation process is of great significance in fundamental research and practical application. One of the major difficulties in replacing the classic molecular metal catalysts with supported metal catalysts is the low chemoselectivity and regioselectivity of the supported metal catalysts because of the lack of a well-defined coordination environment of the metal active sites. In this work, we have systematically studied the influences of key factors (crystallinity, alkali promoters, etc.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!