The persistence of maladaptive heroin-associated memory, which is triggered by drug-related stimuli that remind the individual of the drug's pleasurable and rewarding effects, can impede abstinence efforts. Cyclin-dependent kinase 5 (Cdk5), a neuronal serine/threonine protein kinase that plays a role in multiple neuronal functions, has been demonstrated to be involved in drug addiction and learning and memory. Here, we aimed to investigate the role of cdk5 activity in the basolateral amygdala (BLA) in relapse to heroin seeking, using a self-administration rat model. Male rats underwent 10 days of heroin self-administration training, during which an active nose poke resulted in an intravenous infusion of heroin that was accompanied by a cue. The rats then underwent nose poke extinction for 10 days, followed by subsequent tests of heroin-seeking behaviour. We found that intra-BLA infusion of β-butyrolactone (100 ng/side), a Cdk5 inhibitor, administered 5 min after reactivation, led to a subsequent decrease in heroin-seeking behaviour. Further experiments demonstrated that the effects of β-butyrolactone are dependent on reactivated memories, temporal-specific and long-lasting on relapse of heroin-associated memory. Results provide suggestive evidence that the activity of Cdk5 in BLA is critical for heroin-associated memory and that the specific inhibitor, β-butyrolactone, may hold potential as a substance for the treatment of heroin abuse.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/adb.13326 | DOI Listing |
Int J Neuropsychopharmacol
December 2024
National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China.
Background: Understanding drug addiction as a disorder of maladaptive learning, where drug-associated or environmental cues trigger drug cravings and seeking, is crucial for developing effective treatments. Actin polymerization, a biochemical process, plays a crucial role in drug-related memory formation, particularly evident in conditioned place preference (CPP) paradigms involving drugs like morphine and methamphetamine. However, the role of actin polymerization in the reconsolidation of heroin-associated memories remains understudied.
View Article and Find Full Text PDFFront Pharmacol
March 2024
Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan, China.
Drug-associated pathological memory remains a critical factor contributing to the persistence of substance use disorder. Pharmacological amnestic manipulation to interfere with drug memory reconsolidation has shown promise for the prevention of relapse. In a rat heroin self-administration model, we examined the impact of rimonabant, a selective cannabinoid receptor indirect agonist, on the reconsolidation process of heroin-associated memory.
View Article and Find Full Text PDFBiomed Pharmacother
April 2024
Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China; Department of Human Anatomy, School of Basic Medical Science, Xinjiang Medical University, Urumqi 830001, China. Electronic address:
Neuroendocrinology
March 2024
Department of Neuroscience, Medical University of South Carolina, Charleston, South Carolina, USA.
Introduction: Relapse is a major treatment barrier for opioid use disorder. Environmental cues become associated with the rewarding effects of opioids and can precipitate relapse, even after numerous unreinforced cue presentations, due to deficits in extinction memory recall (EMR). Estradiol (E2) modulates EMR of fear-related cues, but it is unknown whether E2 impacts EMR of reward cues and what brain region(s) are responsible for E2s effects.
View Article and Find Full Text PDFAddict Biol
October 2023
Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China.
The susceptibility to drug cravings evoked by stimuli poses a formidable hurdle in the treatment of addiction and the prevention of relapse. Pharmacological interventions targeting drug-associated memories hold promise for curbing relapse by impeding the process of memory reconsolidation, predominantly governed by cAMP signalling. Exchange Protein Activated by cAMP (Epac) serves as a distinctive mediator of cAMP signalling, which has been implicated in reinforcing the effects of cocaine and facilitating the acquisition.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!