Background: Sweetpotato is an important vegetable and food crop that is bred through sexual crosses and systematic selection. The use of in vitro germination of sweetpotato pollen to test its viability has important theoretical and practical implications for improving the efficiency of sweetpotato crossbreeding by controlling pollination and conducting research on sweetpotato pollen biology.
Results: In this study, we observed the morphological structure of sweetpotato pollen under a scanning electron microscope (SEM), developed an effective method for the in vitro germination of sweetpotato pollen, and examined the viability of sweetpotato pollen after treating plants at different temperatures before blossoming. Sweetpotato pollen grains are spherical, with an average diameter of 87.07 ± 3.27 μm (excluding spines), with multiple germination pores and reticulate pollen surface sculpture. We applied numerous media to sweetpotato pollen germination in vitro to screen the initial medium and optimised the medium components through single-factor design. The most effective liquid medium for in vitro sweetpotato pollen germination contained 50 g/L Sucrose, 50 g/L Polyethylene glycol 4000 (PEG4000), 100 mg/L Boric acid and 300 mg/L Calcium nitrate, with a pH = 6.0. The optimum growth temperature for pollen development in sweetpotato was from 25 to 30 °C. Neither staining nor in situ germination could accurately determine the viability of sweetpotato pollen.
Conclusions: In vitro germination can be used to effectively determine sweetpotato pollen viability. The best liquid medium for in vitro germination of sweetpotato pollen contained 50 g/L Sucrose, 50 g/L Polyethylene glycol 4000 (PEG4000), 100 mg/L Boric acid and 300 mg/L Calcium nitrate, with the pH adjusted to 6.0. This study provides a reliable medium for the detection of sweetpotato pollen viability, which can provide a theoretical reference for sweetpotato genetics and breeding.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10463589 | PMC |
http://dx.doi.org/10.1186/s13007-023-01050-w | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!