Dengue virus (DENV), known to cause viral infection, belongs to the family Flaviviridae, having four serotypes (DENV1-4) that spreads by the bite of the Aedes aegypti mosquito. India has been suffering from dengue outbreaks annually with widespread epidemics by prevalence of all the four DENV serotypes. The diverse spectrum of clinical manifestations in dengue infection, mild to severe forms, makes the need of timely diagnosis and prompt treatment an essence. The identification of a dengue host response signature in serum can increase the understanding of dengue pathogenesis since most dengue NS1 Ag tests have been developed and evaluated in serum samples. Here, to understand the same, we undertook a dual RNA-sequencing (RNA-Seq) based approach from the serum samples of dengue-infected patients. The results thus yield the early transcriptional signatures that discriminated the high viral reads patients from patients who had low dengue viral reads. We identified a significant upregulation of two sets of genes, key antiviral (IFIT3, RSAD2, SAT1) and vascular dysfunction (TNFS10, CXCL8) related genes in the high viral reads group. Deeper delving of this gene profile revealed a unique two-way response, where the antiviral genes can mediate the disease course to mild, contrarily the increased expression of the other gene set might act as pointers of severe disease course. Further, we explored the hematologic parameters from the complete blood count (CBC), which suggests that lymphocytes (low) and neutrophils (high) might serve as an early predictor of prognosis in dengue infection. Collectively, our findings give insights into the foundation for further investigation of the early host response using the RNA isolated from dengue patients' serum samples and opens the door for careful monitoring of the early clinical and transcriptome profiles for management of the dengue patients.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465479 | PMC |
http://dx.doi.org/10.1038/s41598-023-41205-2 | DOI Listing |
Blood
January 2025
Division of Immunology and Allergy, Children's Hospital of Philadelphia; Department of Pediatrics, Perelman School of Medicine; Institute for Immunology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, United States.
Leukopoiesis is lethally arrested in mice lacking the master transcriptional regulator PU.1. Depending on the animal model, subtotal PU.
View Article and Find Full Text PDFElife
December 2024
Laboratory of Immunoregulation and Mucosal Immunology, VIB Center for Inflammation Research, Ghent, Belgium.
Since the precursor frequency of naive T cells is extremely low, investigating the early steps of antigen-specific T cell activation is challenging. To overcome this detection problem, adoptive transfer of a cohort of T cells purified from T cell receptor (TCR) transgenic donors has been extensively used but is not readily available for emerging pathogens. Constructing TCR transgenic mice from T cell hybridomas is a labor-intensive and sometimes erratic process, since the best clones are selected based on antigen-induced CD69 upregulation or IL-2 production in vitro, and TCR chains are polymerase chain reaction (PCR)-cloned into expression vectors.
View Article and Find Full Text PDFPLoS Pathog
January 2025
The Westmead Institute for Medical Research, Westmead, New South Wales, Australia.
HIV infection implicates a spectrum of tissues in the human body starting with viral transmission in the anogenital tract and subsequently persisting in lymphoid tissues and brain. Though studies using isolated cells have contributed significantly towards our understanding of HIV infection, the tissue microenvironment is characterised by a complex interplay of a range of factors, all of which can influence the course of infection but are otherwise missed in ex vivo studies. To address this knowledge gap, it is necessary to investigate the dynamics of infection and the host immune response in situ using imaging-based approaches.
View Article and Find Full Text PDFPLoS Pathog
January 2025
Institute of Pediatric Infection, Immunity, and Critical Care Medicine, Shanghai Children's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Function-to-find domain (FIIND)-containing proteins, including NLRP1 and CARD8, are vital components of the inflammasome signaling pathway, critical for the innate immune response. These proteins exist in various forms due to autoproteolysis within the FIIND domain, resulting in full-length (FL), cleaved N-terminal (NT), and cleaved C-terminal (CT) peptides, which form autoinhibitory complexes in the steady state. However, the detailed mechanism remains elusive.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Gerontology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing 400010, People's Republic of China.
20% acute pancreatitis (AP) develops into severe AP (SAP), a global health crisis, with an increased mortality rate to 30%-50%. Mitochondrial damage and immune disorders are direct factors, which exacerbate the occurrence and progression of AP. So far, mitochondrial and immunity injury in SAP remains largely elusive, with no established treatment options available.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!