The definitive treatment for end-stage renal disease is kidney transplantation, which remains limited by organ availability and post-transplant complications. Alternatively, an implantable bioartificial kidney could address both problems while enhancing the quality and length of patient life. An implantable bioartificial kidney requires a bioreactor containing renal cells to replicate key native cell functions, such as water and solute reabsorption, and metabolic and endocrinologic functions. Here, we report a proof-of-concept implantable bioreactor containing silicon nanopore membranes to offer a level of immunoprotection to human renal epithelial cells. After implantation into pigs without systemic anticoagulation or immunosuppression therapy for 7 days, we show that cells maintain >90% viability and functionality, with normal or elevated transporter gene expression and vitamin D activation. Despite implantation into a xenograft model, we find that cells exhibit minimal damage, and recipient cytokine levels are not suggestive of hyperacute rejection. These initial data confirm the potential feasibility of an implantable bioreactor for renal cell therapy utilizing silicon nanopore membranes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10465514 | PMC |
http://dx.doi.org/10.1038/s41467-023-39888-2 | DOI Listing |
J Funct Biomater
December 2024
Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, 142290 Moscow, Russia.
One of the key factors of the interaction 'osteoplastic material-organism' is the state of the implant surface. Taking into account the fact that the equilibrium in regeneration conditions is reached only after the reparative histogenesis process is completed, the implant surface is constantly modified. This work is devoted to the numerical description of the dynamic bilateral material-medium interaction under close to physiological conditions, as well as to the assessment of the comparability of the model with and experimental results.
View Article and Find Full Text PDFCell Stem Cell
December 2024
Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine Yale School of Medicine, New Haven, CT 06511, USA; Yale Stem Cell Center, New Haven, CT 06520, USA; Department of Pathology, Yale School of Medicine, New Haven, CT 06520, USA; Vascular Biology and Therapeutics Program, Yale University School of Medicine, New Haven, CT 06520, USA; Department of Biomedical Engineering, Yale University, New Haven, CT 06519, USA. Electronic address:
Tissue-engineered vascular conduits (TEVCs), often made by seeding autologous bone marrow cells onto biodegradable polymeric scaffolds, hold promise toward treating single-ventricle congenital heart defects (SVCHDs). However, the clinical adoption of TEVCs has been hindered by a high incidence of graft stenosis in prior TEVC clinical trials. Herein, we developed endothelialized TEVCs by coating the luminal surface of decellularized human umbilical arteries with human induced pluripotent stem cell (hiPSC)-derived endothelial cells (ECs), followed by shear stress training, in flow bioreactors.
View Article and Find Full Text PDFACS Biomater Sci Eng
December 2024
School of Intelligent Manufacturing and Equipment, Shenzhen Institute of Information Technology, Shenzhen 518172, China.
Appl Phys Rev
December 2024
Department of Biomedical Engineering, University of Connecticut, Farmington, Connecticut 06030, USA.
bioprinting, fabricating tissue-engineered implants directly in a patient, was recently developed to overcome the logistical and clinical limitations of traditional bioprinting. printing reduces the time to treatment, allows for real-time reconstructive adjustments, minimizes transportation challenges, improves adhesion to remnant tissue and ensuing tissue integration, and utilizes the body as a bioreactor. Unfortunately, most printers are frame-based systems with limited working areas that are incompatible with the human body and lack portability.
View Article and Find Full Text PDFInt J Mol Sci
November 2024
College of Veterinary Medicine, Chungbuk National University, Cheongju 28644, Republic of Korea.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!