A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Fatigue behaviour of a self-healing dental composite. | LitMetric

Fatigue behaviour of a self-healing dental composite.

Dent Mater

Radboud University Medical Center, Radboud Institute for Molecular Life Sciences, Department of Dentistry, Regenerative Biomaterials, Philips van Leydenlaan 25, Nijmegen, the Netherlands. Electronic address:

Published: October 2023

Objective: Novel self-healing resin-based composites containing microcapsules have been developed to improve the mechanical performance of dental restorations. However, the long-term fatigue behaviour of these self-healing composites has still been hardly investigated. Therefore, this manuscript studied the fatigue behaviour of self-healing composites containing microcapsules by subjecting the specimens to traditional staircase tests and ageing in a custom-designed chewing simulator (Rub&Roll) to simulate oral ageing physiologically relevant conditions.

Methods: To prepare self-healing composite, poly(urea-formaldehyde) microcapsules containing acrylic self-healing liquids were synthesized. Subsequently, these microcapsules (10 wt%) and initiator (benzoyl peroxide, BPO, 2 wt%) were incorporated into a commercial flowable resin-based composite. Microcapsule-free resin-based composites with and without BPO were also prepared as control specimens. A three-point flexural test was used to measure the initial flexural strength (S). Subsequently, half of the specimens were used for fatigue testing using a common staircase approach to measure the fatigue strengths (FS). In addition, the other specimens were aged in the Rub&Roll machine for four weeks where after the final flexural strength (S) was measured.

Results: Compared to S, FS of all tested specimens significantly decreased as measured through staircase testing. After 4 weeks of ageing in the Rub&Roll machine, S was significantly reduced compared to S for microcapsule-free resin-based composites, but not for the self-healing composites (p = 0.3658). However, the self-healing composites are still in the experimental phase characterized by a low mechanical strength, which still impedes further clinical translation.

Significance: Self-healing composites containing microcapsules exhibit improved fatigue resistance compared to microcapsule-free non-self-healing composites.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.dental.2023.08.172DOI Listing

Publication Analysis

Top Keywords

self-healing composites
20
fatigue behaviour
12
behaviour self-healing
12
resin-based composites
12
composites microcapsules
12
self-healing
9
composites
9
microcapsule-free resin-based
8
flexural strength
8
rub&roll machine
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!