The present study examined how humans use the target information provided immediately before the onset of motor output to prepare the initial motor command in the target force production task. Twenty healthy individuals participated in this study. A target cursor indicating the target force, and a force cursor indicating the force produced with index finger flexion were presented, and participants produced force in response to the appearance of the force cursor so that it moved toward the target cursor as fast as possible. The rate of force development in a time window of 0-100 ms after the onset of force development, representing the intensity of the initial motor command without online feedback adjustment, was measured. The present findings support the hypotheses that humans use the target information provided immediately before the onset of motor output to prepare the initial motor command, and they simultaneously prepare the initial motor command for the intermediate of multiple potential targets using the information of targets provided in previous trials. Another hypothesis, that humans use the information of the target or motor process of the trial immediately before the current trial to prepare the initial motor command, was not supported.

Download full-text PDF

Source
http://dx.doi.org/10.1123/mc.2023-0023DOI Listing

Publication Analysis

Top Keywords

initial motor
24
motor command
24
prepare initial
16
target force
12
humans target
12
target
9
motor
9
force
9
command target
8
force production
8

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

Effects of Hippotherapy and Horse-Riding Simulators on Gross Motor Function in Children with Cerebral Palsy: A Systematic Review.

J Clin Med

January 2025

Department of Physiotherapy, Faculty of Medicine, Health and Sports, Universidad Europea de Madrid, 28670 Villaviciosa de Odón, Spain.

: Cerebral palsy (CP) can have a negative impact on gross motor function. Conventional hippotherapy and horse-riding simulators (HRS) have shown promising results on gross motor function in populations with neurological disorders. This review aims to update the knowledge on the effectiveness of hippotherapy on gross motor function in children with CP.

View Article and Find Full Text PDF

Cerebral palsy (CP) manifests with abnormal posture and impaired selective motor control, notably affecting trunk control and dynamic balance coordination, leading to inadequate postural control. Previous research has indicated the benefits of pulsed electromagnetic field (PEMF) therapy for various musculoskeletal and neurological conditions. Therefore, we conducted a randomized pilot study to assess the feasibility of our preliminary research design and examine the effect of the PEMF treatment among children with CP.

View Article and Find Full Text PDF

Detection Method for Bolt Loosening Based on Summation Coefficient of Absolute Spectrum Ratio.

Sensors (Basel)

January 2025

Fujian Provincial Key Laboratory of Terahertz Functional Devices and Intelligent Sensing, School of Mechanical Engineering and Automation, Fuzhou University, Fuzhou 350108, China.

A bolt loosening detection method based on the summation coefficient of the absolute spectrum ratio technique is proposed to address the prevalent issue of bolt loosening in mechanical connections. This proposed method involves initially collecting vibration and rotation speed signals of the motor bolt connection structure, acquiring the baseline spectrum curve of a healthy structure and the spectrum curves of non-healthy structures under different degrees of bolt looseness through chirp Fourier transform (CFT). Subsequently, the spectrum ratio curves between healthy and non-healthy structures are calculated for different degrees of bolt loosening, and then the Summation Coefficient of Absolute Spectrum Ratio (SCASR) is defined to indicate the looseness.

View Article and Find Full Text PDF

Background: Neurodegenerative diseases (NGD) encompass a range of progressive neurological conditions, such as Alzheimer's disease (AD) and Parkinson's disease (PD), characterised by the gradual deterioration of neuronal structure and function. This degeneration manifests as cognitive decline, movement impairment, and dementia. Our focus in this investigation is on PD, a neurodegenerative disorder characterized by the loss of dopamine-producing neurons in the brain, leading to motor disturbances.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!