Bromodomain PHD finger transcription factor (BPTF), a core subunit of nucleosome-remodeling factor (NURF) complex, plays an important role in chromatin remodeling. However, few information of BPTF is available in pig, especially in mammalian follicular granulosa cells (GCs). The present study firstly confirmed that BPTF in porcine was relative close to human and mouse. The expression of BPTF could be detected in ovary, testes, lung, kidney, large intestine, and small intestine. And a relative high expression of BPTF was observed in ovarian follicles and GCs. When BPTF was knocked down (BPTF-siRNA), the viability of GCs was affected. And the expression level of CDK1, cyclin B1, CDK4 and CDK2 was higher than the control, which might indicate that the cell cycle of GCs was inhibited from S to G2/M phase. Although the apoptosis level was induced in the BPTF-siRNA GCs, the reduced level of H3K4 methylation was detected with the down regulation of SMYD3, EHMT2 and DPY30. Thereby, results in the present might provide the primary knowledge of BPTF in GCs and the follicular development in pig.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.theriogenology.2023.08.017DOI Listing

Publication Analysis

Top Keywords

chromatin remodeling
8
bptf
8
cell cycle
8
granulosa cells
8
expression bptf
8
gcs
6
remodeling protein
4
protein bptf
4
bptf mediates
4
mediates cell
4

Similar Publications

Biophysical constraints limit the specificity with which transcription factors (TFs) can target regulatory DNA. While individual nontarget binding events may be low affinity, the sheer number of such interactions could present a challenge for gene regulation by degrading its precision or possibly leading to an erroneous induction state. Chromatin can prevent nontarget binding by rendering DNA physically inaccessible to TFs, at the cost of energy-consuming remodeling orchestrated by pioneer factors (PFs).

View Article and Find Full Text PDF

Deletion of metal transporter Zip14 reduces major histocompatibility complex II expression in murine small intestinal epithelial cells.

Proc Natl Acad Sci U S A

January 2025

Center for Nutritional Sciences, Food Science and Human Nutrition Department, College of Agricultural and Life Sciences, University of Florida, Gainesville, FL 32611.

Documented worldwide, impaired immunity is a cardinal signature resulting from loss of dietary zinc, an essential micronutrient. A steady supply of zinc to meet cellular requirements is regulated by an array of zinc transporters. Deletion of the transporter Zip14 (Slc39a14) in mice produced intestinal inflammation.

View Article and Find Full Text PDF

Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype.

View Article and Find Full Text PDF

In single cells, variably sized nanoscale chromatin structures are observed, but it is unknown whether these form a cohesive framework that regulates RNA transcription. Here, we demonstrate that the human genome is an emergent, self-assembling, reinforcement learning system. Conformationally defined heterogeneous, nanoscopic packing domains form by the interplay of transcription, nucleosome remodeling, and loop extrusion.

View Article and Find Full Text PDF

The p63 protein is a master regulatory transcription factor that plays crucial roles in cell differentiation, adult tissue homeostasis, and chromatin remodeling, and its dysregulation is associated with genetic disorders, physiological and premature aging, and cancer. The effects of p63 are carried out by two main isoforms that regulate cell proliferation and senescence. p63 also controls the epigenome by regulating interactions with histone modulators, such as the histone acetyltransferase p300, deacetylase HDAC1/2, and DNA methyltransferases.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!