Personal wearable devices are considered important in advanced healthcare, military, and sports applications. Among them, e-textiles are the best candidates because of their intrinsic conformability without any additional device installation. However, e-textile manufacturing to date has a high process complexity and low design flexibility. Here, we report the direct laser writing of e-textiles by converting raw Kevlar textiles to electrically conductive laser-induced graphene (LIG) via femtosecond laser pulses in ambient air. The resulting LIG has high electrical conductivity and chemical reliability with a low sheet resistance of 2.86 Ω/□. Wearable multimodal e-textile sensors and supercapacitors are realized on different types of Kevlar textiles, including nonwoven, knit, and woven structures, by considering their structural textile characteristics. The nonwoven textile exhibits high mechanical stability, making it suitable for applications in temperature sensors and micro-supercapacitors. On the other hand, the knit textile possesses inherent spring-like stretchability, enabling its use in the fabrication of strain sensors for human motion detection. Additionally, the woven textile offers special sensitive pressure-sensing networks between the warp and weft parts, making it suitable for the fabrication of bending sensors used in detecting human voices. This direct laser synthesis of arbitrarily patterned LIGs from various textile structures could result in the facile realization of wearable electronic sensors and energy storage.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c04120DOI Listing

Publication Analysis

Top Keywords

multimodal e-textile
8
nonwoven knit
8
knit woven
8
direct laser
8
kevlar textiles
8
making suitable
8
sensors
5
textile
5
e-textile enabled
4
enabled one-step
4

Similar Publications

Wearable textile sensors for continuous glucose monitoring.

Biosens Bioelectron

January 2025

School of Clinical Medicine, Discipline of Women's Health, Faculty of Medicine, University of New South Wales, Royal Hospital for Women, Sydney, Australia; Department of Maternal-Fetal Medicine, Royal Hospital for Women, Sydney, Australia. Electronic address:

Diabetes and cardiovascular disease are interlinked chronic conditions that necessitate continuous and precise monitoring of physiological and environmental parameters to prevent complications. Non-invasive monitoring technologies have garnered significant interest due to their potential to alleviate the current burden of diabetes and cardiovascular disease management. However, these technologies face limitations in accuracy and reliability due to interferences from physiological and environmental factors.

View Article and Find Full Text PDF

Background: The effect of transcutaneous electrical nerve stimulation (TENS) on pain and impression of change was assessed during a 2.5-hour intervention on the first postoperative days following hip surgery in a randomized, single-blinded, placebo-controlled trial involving 30 patients.

Methods: Mixed-frequency TENS (2 Hz/80 Hz) was administered using specially designed pants integrating modular textile electrodes to facilitate stimulation both at rest and during activity.

View Article and Find Full Text PDF

Electronic textiles (E-textiles) offer great wearing comfort and unobtrusiveness, thus holding potential for next-generation health monitoring wearables. However, the practical implementation is hampered by challenges associated with poor signal quality, substantial motion artifacts, durability for long-term usage, and non-ideal user experience. Here, we report a cost-effective E-textile system that features 3D microfiber-based electrodes for greatly increasing the surface area.

View Article and Find Full Text PDF

Personal wearable devices are considered important in advanced healthcare, military, and sports applications. Among them, e-textiles are the best candidates because of their intrinsic conformability without any additional device installation. However, e-textile manufacturing to date has a high process complexity and low design flexibility.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!