Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Background: Diagnosis and treatment management for head and neck squamous cell carcinoma (HNSCC) is guided by routine diagnostic head and neck computed tomography (CT) scans to identify tumor and lymph node features. The extracapsular extension (ECE) is a strong predictor of patients' survival outcomes with HNSCC. It is essential to detect the occurrence of ECE as it changes staging and treatment planning for patients. Current clinical ECE detection relies on visual identification and pathologic confirmation conducted by clinicians. However, manual annotation of the lymph node region is a required data preprocessing step in most of the current machine learning-based ECE diagnosis studies.
Purpose: In this paper, we propose a Gradient Mapping Guided Explainable Network (GMGENet) framework to perform ECE identification automatically without requiring annotated lymph node region information.
Methods: The gradient-weighted class activation mapping (Grad-CAM) technique is applied to guide the deep learning algorithm to focus on the regions that are highly related to ECE. The proposed framework includes an extractor and a classifier. In a joint training process, informative volumes of interest (VOIs) are extracted by the extractor without labeled lymph node region information, and the classifier learns the pattern to classify the extracted VOIs into ECE positive and negative.
Results: In evaluation, the proposed methods are well-trained and tested using cross-validation. GMGENet achieved test accuracy and area under the curve (AUC) of 92.2% and 89.3%, respectively. GMGENetV2 achieved 90.3% accuracy and 91.7% AUC in the test. The results were compared with different existing models and further confirmed and explained by generating ECE probability heatmaps via a Grad-CAM technique. The presence or absence of ECE has been analyzed and correlated with ground truth histopathological findings.
Conclusions: The proposed deep network can learn meaningful patterns to identify ECE without providing lymph node contours. The introduced ECE heatmaps will contribute to the clinical implementations of the proposed model and reveal unknown features to radiologists. The outcome of this study is expected to promote the implementation of explainable artificial intelligence-assiste ECE detection.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.16680 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!