The massive accumulation of extrachromosomal ribosomal DNA circles (ERCs) in yeast mother cells has been long cited as the primary driver of replicative ageing. ERCs arise through ribosomal DNA (rDNA) recombination, and a wealth of genetic data connects rDNA instability events giving rise to ERCs with shortened life span and other ageing pathologies. However, we understand little about the molecular effects of ERC accumulation. Here, we studied ageing in the presence and absence of ERCs, and unexpectedly found no evidence of gene expression differences that might indicate stress responses or metabolic feedback caused by ERCs. Neither did we observe any global change in the widespread disruption of gene expression that accompanies yeast ageing, altogether suggesting that ERCs are largely inert. Much of the differential gene expression that accompanies ageing in yeast was actually associated with markers of the senescence entry point (SEP), showing that senescence, rather than age, underlies these changes. Cells passed the SEP irrespective of ERCs, but we found the SEP to be associated with copy number amplification of a region of chromosome XII between the rDNA and the telomere (ChrXIIr) forming linear fragments up to approximately 1.8 Mb size, which arise in aged cells due to rDNA instability but through a different mechanism to ERCs. Therefore, although rDNA copy number increases dramatically with age due to ERC accumulation, our findings implicate ChrXIIr, rather than ERCs, as the primary driver of senescence during budding yeast ageing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10464983 | PMC |
http://dx.doi.org/10.1371/journal.pbio.3002250 | DOI Listing |
The genus boasts abundant germplasm resources and comprises numerous species. Among these, medicinal plants of this genus, which have a long history, have garnered attention of scholars. This study sequenced and analyzed the chloroplast genomes of six species of medicinal plants (, , , , , and , respectively) to explore their interspecific relationships.
View Article and Find Full Text PDFMitochondrial DNA B Resour
January 2025
Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, Beijing, China.
We determined the complete chloroplast genome sequence of S. S. Lai 2004.
View Article and Find Full Text PDFPeerJ
January 2025
CIBIO, Centro de Investigação em Biodiversidade e Recursos Genéticos, InBIO Laboratório Associado, Universidade do Porto, Campus de Vairão, Porto, Portugal.
The rough pen shell Linnaeus, 1758 (family Pinnidae) is a mollusc with an Atlantic-Mediterranean distribution, typically inhabiting coarse sandy substrates. Habitat degradation is considered the primary cause of population decline, leading to the designation 'Vulnerable' in certain regions. In this study, we conducted a genetic analysis of populations of from Cabo Verde and compared them with populations from the Mediterranean and Macaronesia.
View Article and Find Full Text PDFParasitol Int
January 2025
Faculty of Environmental Sciences, The University of Shiga Prefecture, Shiga, Japan. Electronic address:
Urorchis Ozaki, 1927 and Neoplagioporus Shimazu, 1990 (Digenea: Opecoelidae: Sphaerostomatinae) comprise species parasitic in freshwater fishes of eastern Asia, although the status of these genera is questionable. We revised these genera, primarily using evidence from a molecular phylogeny based on nuclear ribosomal DNA, including new sequences of four known and one new species. Urorchis was part of the clade of Neoplagioporus species, rendering the genus Neoplagioporus paraphyletic.
View Article and Find Full Text PDFBMC Microbiol
January 2025
The Marine Science Institute, College of Science, University of the Philippines Diliman, Quezon City, Philippines.
Background: The observed growth variability of different aquaculture species in captivity hinders its large-scale production. For the sandfish Holothuria scabra, a tropical sea cucumber species, there is a scarcity of information on its intestinal microbiota in relation to host growth, which could provide insights into the processes that affect growth and identify microorganisms with probiotic or biochemical potential that could improve current production strategies. To address this gap, this study used 16 S rRNA amplicon sequencing to characterize differences in gut and fecal microbiota among large and small juveniles reared in floating ocean nurseries.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!