Keeping in view the toxicity of the Rhodamine B, the present study is designed to remediate the water loaded with toxic dyes using gallium oxide and gallium hybrids as photocatalyst. Precipitation coupled with sonochemical method is adopted for the synthesis of gallium oxide while the post grafting method is adopted for the synthesis of gallium hybrids with the indole and its derivatives. FTIR spectra showed the characteristic absorption bands of gallium oxide and gallium hybrids at 400-700 cm and 1400-1600 cm. SEM and XRD showed the micro-sized rectangular rod-shaped gallium oxide with rhombohedral geometry. The average crystallite size of gallium hybrids was 26-32 nm calculated using the Debye Scherrer and Williamson-Hal models. The BET isotherm of gallium hybrids revealed the adsorption type-IV and hysteresis loop (H3) proposing multilayer and mesoporous structures with increase in surface area from 26 m/g of gallium oxide to 31 m/g of gallium-indole, 35 m/g of gallium-methyl indole, and 37 m/g of gallium-carboxylic indole. XPS showed the presence of gallium (3-14%), oxygen (28-32%), nitrogen (23-46%), and carbon (9-46%). The gallium oxide and gallium hybrids showed 47-72% optimum degradation of Rhodamine B under 2 h of illumination at pH 7 and 0.03 mg/L. The degradation rate followed a Langmuir-Hinshelwood model with R > 0.9.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-11683-yDOI Listing

Publication Analysis

Top Keywords

gallium hybrids
28
gallium oxide
24
gallium
14
oxide gallium
12
method adopted
8
adopted synthesis
8
synthesis gallium
8
hybrids
7
oxide
6
photodegradation rhodamine
4

Similar Publications

All-Optical Generation and Detection of Coherent Acoustic Vibrations in Single Gallium Phosphide Nanoantennas Probed near the Anapole Excitation.

Nano Lett

January 2025

Facultad de Ciencias Exactas y Naturales, Departamento de Física, Universidad de Buenos Aires, 1428 Buenos Aires, Argentina.

Nanostructured high-index dielectrics have shown great promise as low-loss photonic platforms for wavefront control and enhancing optical nonlinearities. However, their potential as optomechanical resonators has remained unexplored. In this work, we investigate the generation and detection of coherent acoustic phonons in individual crystalline gallium phosphide nanodisks on silica in a pump-probe configuration.

View Article and Find Full Text PDF

Background: Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts.

Objectives: The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction.

View Article and Find Full Text PDF

Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.

View Article and Find Full Text PDF

Spiking neural network algorithms require fine-tuned neuromorphic hardware to increase their effectiveness. Such hardware, mainly digital, is typically built on mature silicon nodes. Future artificial intelligence applications will demand the execution of tasks with increasing complexity and over timescales spanning several decades.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!