Objectives: The purpose of this study was to investigate the oxidative stress cycle consisting of reactive oxygen molecules (ROS), glutathione (GSH) and glutathione S-transferase (GST) in caries-related pulp inflammation.

Methodology: Fifty-four pulp tissue samples were collected from healthy donors with the diagnosis of reversible pulpitis, symptomatic irreversible pulpitis, and healthy pulp. Twelve pulp samples from each group were homogenized and total protein, ROS, GSH, and GST were measured by spectrophotometer. The remaining 6 samples from each group were prepared for paraffin block and used for the histopathologic and immunohistochemical evaluation of oxidative stress parameters and TUNEL labeling. Data were analyzed statistically.

Results: The results revealed that total protein levels significantly decreased; however, ROS levels increased in both reversible and irreversible pulpitis compared to the healthy pulp (p < 0.01). Also, as inflammation increases, GST enzyme levels decrease while GSH levels increase significantly (p < 0.05). It was found that the number of TUNEL (+) cells was increased in irreversible pulpitis samples compared to healthy and reversible pulpitis groups (p < 0.05). GSTP1 and GSH immunoreactivity were also observed in irreversible pulpitis samples.

Conclusions: It has been revealed that caries-related inflammation alters the oxidative stress cycle in dental pulp tissue. The increase in GSH levels in the inflamed dental pulp due to the increase in ROS levels may improve the defensive ability of the dental pulp.

Clinical Relevance: There is a relationship between oxidative stress and inflammation. Control of excessive oxidative stress in pulpitis can stimulate reparative and regenerative processes. The present findings may provide an overview of the management of oxidative stress in cases with pulpitis during regenerative treatments.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00784-023-05203-yDOI Listing

Publication Analysis

Top Keywords

oxidative stress
28
irreversible pulpitis
16
stress cycle
12
dental pulp
12
pulp tissue
12
evaluation oxidative
8
inflamed dental
8
pulp
8
pulpitis
8
reversible pulpitis
8

Similar Publications

T-2 toxin is a highly toxic fungal toxin that threatens humans and animals' health. As a major detoxifying and metabolic organ, the kidney is also a target of T-2 toxin. This article reviews T-2 toxin nephrotoxicity research progress, covering renal structure and function damage, nephrotoxicity mechanisms, and detoxification methods to future research directions.

View Article and Find Full Text PDF

Perfluorooctane sulfonic acid (PFOS) is an anthropogenic chemical found in aqueous film-forming foams (AFFFs) and many consumer products. Despite its environmental ubiquity and persistence, little is known about the effects of PFOS on stress levels in wild animals. Here, we examined PFOS bioaccumulation and correlations between PFOS exposure and oxidative stress in snapping turtles (Chelydra serpentina) downstream of Griffiss Air Force Base in Rome, New York, a known source of AFFF contamination.

View Article and Find Full Text PDF

Adipose-derived stem cells regulate mitochondrial dynamics to alleviate the aging of HFF-1 cells.

In Vitro Cell Dev Biol Anim

January 2025

Department of Outpatient Service, The Affiliated Nanhua Hospital, Hengyang Medical School, University of South China, Hengyang, 421002, Hunan, China.

The objective of this study is to explore how adipose-derived stem cells (ASCs) regulate mitochondrial structure and function and the impact of this regulation on slowing cellular senescence. HFF-1 cells were induced by HO to establish a cellular senescence model, and ASCs or Mdivi-1 (mitochondrial fission inhibitor) was added. MTT examined the cell proliferation; flow cytometry detected mitochondrial membrane potential as well as apoptosis and cell cycle; kit measured ATP production; ELISA analyzed the levels of interleukin-6 (IL-6), interleukin 1 beta (IL-1β), tumor necrosis factor alpha-like (TNF-α), glutathione (GSH), malondialdehyde (MDA), and superoxide dismutase (SOD); Western blotting and qRT-PCR detected the expression of protein and mRNA levels; and β-galactosidase staining observed the degree of cellular senescence.

View Article and Find Full Text PDF

Alu-Sc-mediated exonization generated a mitochondrial LKB1 gene variant found only in higher order primates.

Sci Rep

January 2025

Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), 8A Biomedical Grove, #04-06 Immunos, Singapore, 138648, Singapore.

The tumor suppressor LKB1/STK11 plays important roles in regulating cellular metabolism and stress responses and its mutations are associated with various cancers. We recently identified a novel exon 1b within intron 1 of human LKB1/STK11, which generates an alternatively spliced, mitochondria-targeting LKB1 isoform important for regulating mitochondrial oxidative stress. Here we examined the formation of this novel exon 1b and uncovered its relatively late emergence during evolution.

View Article and Find Full Text PDF

Understanding the molecular mechanisms that confer cold resistance in mammalian cells might be relevant for advancing medical applications. This study aimed to exploit the protective function of Late Embryogenesis Abundant (LEA) proteins, known to provide resistance to low temperatures in extremophiles and plants, by their exogenous expression in mammalian cells, and compare their effects with the well characterized antioxidant, vitamin E.Remarkably, the expression of LEA proteins in mammalian cells exerted cold-protective effect similar to Vitamin E.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!