Purpose: To investigate the performance of deep learning and radiomics features of intra-tumoral region (ITR) and peri-tumoral region (PTR) in the diagnosing of breast cancer lung metastasis (BCLM) and primary lung cancer (PLC) with low-dose CT (LDCT).

Methods: We retrospectively collected the LDCT images of 100 breast cancer patients with lung lesions, comprising 60 cases of BCLM and 40 cases of PLC. We proposed a fusion model that combined deep learning features extracted from ResNet18-based multi-input residual convolution network with traditional radiomics features. Specifically, the fusion model adopted a multi-region strategy, incorporating the aforementioned features from both the ITR and PTR. Then, we randomly divided the dataset into training and validation sets using fivefold cross-validation approach. Comprehensive comparative experiments were performed between the proposed fusion model and other eight models, including the intra-tumoral deep learning model, the intra-tumoral radiomics model, the intra-tumoral deep-learning radiomics model, the peri-tumoral deep learning model, the peri-tumoral radiomics model, the peri-tumoral deep-learning radiomics model, the multi-region radiomics model, and the multi-region deep-learning model.

Results: The fusion model developed using deep-learning radiomics feature sets extracted from the ITR and PTR had the best classification performance, with the area under the curve of 0.913 (95% CI 0.840-0.960). This was significantly higher than that of the single region's radiomics model or deep learning model.

Conclusions: The combination of radiomics and deep learning features was effective in discriminating BCLM and PLC. Additionally, the analysis of the PTR can mine more comprehensive tumor information.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00432-023-05329-2DOI Listing

Publication Analysis

Top Keywords

deep learning
28
radiomics model
24
fusion model
16
learning features
12
breast cancer
12
model
12
deep-learning radiomics
12
model peri-tumoral
12
radiomics
10
radiomics deep
8

Similar Publications

Sleep stages classification one of the essential factors concerning sleep disorder diagnoses, which can contribute to many functional disease treatments or prevent the primary cognitive risks in daily activities. In this study, A novel method of mapping EEG signals to music is proposed to classify sleep stages. A total of 4.

View Article and Find Full Text PDF

AxonFinder: Automated segmentation of tumor innervating neuronal fibers.

Heliyon

January 2025

Cancer Early Detection Advanced Research Center (CEDAR), Knight Cancer Institute, Oregon Health and Science University, Portland, OR, USA.

Neurosignaling is increasingly recognized as a critical factor in cancer progression, where neuronal innervation of primary tumors contributes to the disease's advancement. This study focuses on segmenting individual axons within the prostate tumor microenvironment, which have been challenging to detect and analyze due to their irregular morphologies. We present a novel deep learning-based approach for the automated segmentation of axons, AxonFinder, leveraging a U-Net model with a ResNet-101 encoder, based on a multiplexed imaging approach.

View Article and Find Full Text PDF

An empirical study of LLaMA3 quantization: from LLMs to MLLMs.

Vis Intell

December 2024

Department of Information Technology and Electrical Engineering, ETH Zurich, Sternwartstrasse 7, Zürich, Switzerland.

The LLaMA family, a collection of foundation language models ranging from 7B to 65B parameters, has become one of the most powerful open-source large language models (LLMs) and the popular LLM backbone of multi-modal large language models (MLLMs), widely used in computer vision and natural language understanding tasks. In particular, LLaMA3 models have recently been released and have achieved impressive performance in various domains with super-large scale pre-training on over 15T tokens of data. Given the wide application of low-bit quantization for LLMs in resource-constrained scenarios, we explore LLaMA3's capabilities when quantized to low bit-width.

View Article and Find Full Text PDF

Advances in modeling cellular state dynamics: integrating omics data and predictive techniques.

Anim Cells Syst (Seoul)

January 2025

Department of Genome Medicine and Science, Gachon University College of Medicine, Incheon, Republic of Korea.

Dynamic modeling of cellular states has emerged as a pivotal approach for understanding complex biological processes such as cell differentiation, disease progression, and tissue development. This review provides a comprehensive overview of current approaches for modeling cellular state dynamics, focusing on techniques ranging from dynamic or static biomolecular network models to deep learning models. We highlight how these approaches integrated with various omics data such as transcriptomics, and single-cell RNA sequencing could be used to capture and predict cellular behavior and transitions.

View Article and Find Full Text PDF

In weightlifting, quantitative kinematic analysis is essential for evaluating snatch performance. While marker-based (MB) approaches are commonly used, they are impractical for training or competitions. Markerless video-based (VB) systems utilizing deep learning-based pose estimation algorithms could address this issue.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!