Purpose: The integrin αβ and aminopeptidase N (APN/CD13) play vital roles in the tumor angiogenesis process. They are highly expressed in a variety of tumor cells and proliferating endothelial cells during angiogenesis, which have been considered as highly promising targets for tumor imaging. Arginine-glycine-aspartic (RGD) and asparagine-glycine-arginine (NGR) are two peptides specifically binding to the integrin αβ and CD13, respectively. In this study, we optimized our previously developed probe and preclinically evaluated the new integrin αβ and CD13 dual-targeted probe, NOTA-RGD-NGR (denoted as HX01) radiolabeled with Ga, in 10 different subcutaneous and orthotopic tumor models.
Methods: The specific activity and radiochemical purity of [Ga]Ga-HX01 were identified. The dual-receptor targeting ability was confirmed by a series of blocking studies and partly muted tracers using BxPC-3 xenograft model. The dynamic imaging study and dose escalation study were explored to determine the optimal imaging time point and dosage in the BxPC-3 xenograft model. Next, we established a variety of subcutaneous and orthotopic tumor models including pancreas (BxPC-3), breast (MCF-7), gallbladder (NOZ), lung (HCC827), ovary (SK-OV-3), colorectal (HCT-8), liver (HuH-7), stomach (NUGC-4), and glioma (U87) cancers. All models underwent [Ga]Ga-HX01 PET/CT imaging about 2 weeks post-inoculation, with a subset of them undergoing [F]FDG PET/CT scan performed concurrently, and their results were compared. In addition, ex vivo biodistribution studies were also performed for verifying the semi-quantitative results of the non-invasive PET images.
Results: [Ga]Ga-HX01 significantly outperformed single target probes in the BxPC-3 xenograft model. All blocking and single target groups exhibited significantly descending tumor uptake. The high tumor uptakes were found in BxPC-3, MCF-7, and NOZ subcutaneous tumors (%ID/g > 1.1), while middle uptakes were observed in HCC827, SK-OV-3, HCT-8, and HuH-7 subcutaneous tumor (%ID/g 0.7-1.0). Due to the low background, the tumor-to-muscle and tumor-to-blood ratios of [Ga]Ga-HX01 were higher than that of [F]FDG.
Conclusions: [Ga]Ga-HX01, as a dual target imaging agent, exhibited superior in vivo performance in different subcutaneous and orthotopic mice models of human tumors over [F]FDG and its respectively mono-receptor targeted agents, which warrants the future clinical translation for tumor imaging.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00259-023-06412-z | DOI Listing |
STAR Protoc
January 2025
Department of Medicine, Division of Hematology, Oncology, and Transplantation, University of Minnesota Medical School, Minneapolis, MN, USA; Masonic Cancer Center, University of Minnesota Medical School, Minneapolis, MN, USA. Electronic address:
Tumor Treating Fields (TTFields) are electric fields clinically approved for cancer treatment, delivered via arrays attached to the patient's skin. Here, we present a protocol for applying TTFields to torso orthotopic and subcutaneous mouse tumor models using the inovivo system. We guide users on proper system component connections, study protocol design, mouse fur depilation, array application, and treatment condition adjustment and monitoring.
View Article and Find Full Text PDFJ Cancer Res Ther
December 2024
Department of Gastroenterology, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, Jiangsu, China.
Aim: The tumor microenvironment in pancreatic cancer, characterized by abundant desmoplastic stroma, has been implicated in the failure of chemotherapy. Therefore, developing therapeutic strategies targeting tumor and stromal cells is essential. Triptolide, a natural compound derived from the plant Tripterygium wilfordii, has shown antitumor activity in various cancers, including pancreatic cancer.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Tianjin Key Laboratory of Biomedical Materials and Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, 300192, China.
The development of efficient therapeutic strategies to promote ferroptotic cell death offers significant potential for hepatocellular carcinoma (HCC) treatment. Herein, this study presents an HCC-targeted nanoplatform that integrates bimetallic FeMoO nanoparticles with CO-releasing molecules, and further camouflaged with SP94 peptide-modified macrophage membrane for enhanced ferroptosis-driven multi-modal therapy of HCC. Leveraging the multi-enzyme activities of the multivalent metallic elements, the nanoplatform not only decomposes HO to generate oxygen and alleviate tumor hypoxia but also depletes glutathione to inactivate glutathione peroxides 4, which amplify sonodynamic therapy and ferroptotic tumor death under ultrasound (US) irradiation.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
Background: Immunosuppressive phenotype compromised immunotherapy efficacy of hepatocellular carcinoma. Tumor cells intrinsic mitochondria dynamics could pass effects on the extracellular microenvironment through mtDNA stress. PGAM5 anchors at mitochondria and regulates mitochondria functions.
View Article and Find Full Text PDFJ Immunother Cancer
January 2025
State Key Laboratory of Systems Medicine for Cancer of Oncology Department and Shanghai Cancer Institute, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
Background: To date, a growing body of evidence suggests that unfolded protein response (UPR) sensors play a vital role in carcinogenesis. However, it remains unclear whether they are involved in pancreatic ductal adenocarcinoma (PDAC) and how they relate to clinical outcomes. This study aims to investigate the biological function and mechanism of how a novel UPR sensor, CREB3L1 works in PDAC and further evaluate its clinical application prospect.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!