Carbapenem-resistant (CRKP) has emerged as a major clinical and public health threat. The rapid dissemination of this pathogen is driven by several successful clones worldwide. We aimed to investigate the CRKP clonal lineages, their antibiotic resistance determinants and their potential transmissions in a tertiary care hospital located in Athens, Greece. Between 2003 and 2018, 392 CRKP isolates from bloodstream infections were recovered from hospitalized patients. Whole genome sequencing (WGS) was performed on the Illumina platform to characterize 209 of these isolates. In total, 74 % (=155) of 209 isolates belonged to three major clonal lineages: ST258 (=108), ST147 (=29) and ST11 (=18). Acquired carbapenemase genes were the mechanisms of resistance in 205 isolates ( , =123; , =56; , =20; , =6). Strong associations (=0.0004) were observed between carbapenemase genes and clonal lineages. We first isolated -carrying ST147 strains during the early sampling period in 2003, followed by the emergence of -carrying ST258 in 2006 and -carrying ST11 in 2013. Analysis of genetic distances between the isolates revealed six potential transmission events. When contextualizing the current collection with published data, ST147 reflected the global diversity, ST258 clustered with isolates representing the first introduction into Europe and ST11 formed a distinct geographically restricted lineage indicative of local spread. This study demonstrates the changing profile of bloodstream CRKP in a tertiary care hospital over a 15 year period and underlines the need for continued genomic surveys to develop strategies to contain further dissemination. This article contains data hosted by Microreact.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483420PMC
http://dx.doi.org/10.1099/mgen.0.001082DOI Listing

Publication Analysis

Top Keywords

clonal lineages
12
bloodstream infections
8
hospital year
8
year period
8
tertiary care
8
care hospital
8
209 isolates
8
carbapenemase genes
8
isolates
6
three lineages
4

Similar Publications

causes hospital-acquired infections in human patients with compromised immune system. Strains associated to nosocomial infections are often resistant to carbapenems and belong to few international clones (IC1-11). .

View Article and Find Full Text PDF

Emergence and establishment of Staphylococcus haemolyticus ST29 in two Western France neonatal intensive care units.

J Hosp Infect

January 2025

CHU Rennes, Service de Bactériologie-Hygiène Hospitalière, Rennes, France; UMR_S 1230 Inserm BRM, University of Rennes, Rennes, France. Electronic address:

Purpose: Since 2021, several reports of Staphylococcus haemolyticus outbreaks in neonatal intensive care units (NICUs) have been reported in France. The aim of this study was to understand how it became established in the NICUs of two facilities, which share the care of newborns.

Methods: All positive S.

View Article and Find Full Text PDF

Background: Nemonoxacin is a new quinolone with an antibacterial efficacy against methicillin-resistant Staphylococcus aureus (MRSA). Certain sequence types (STs) have been emerging in Taiwan, including fluoroquinolone-resistant ST8/USA300. It's an urgent need to determine nemonoxacin susceptibility against ST8/USA300 and other emerging lineages, if any.

View Article and Find Full Text PDF

Nr4a1 and Nr4a3 redundantly control clonal deletion and contribute to an anergy-like transcriptome in auto-reactive thymocytes to impose tolerance in mice.

Nat Commun

January 2025

Division of Rheumatology, Rosalind Russell and Ephraim P. Engleman Arthritis Research Center, Department of Medicine, University of California, San Francisco, CA, 94143, USA.

The Nr4a nuclear hormone receptors are transcriptionally upregulated in response to antigen recognition by the T cell receptor (TCR) in the thymus and are implicated in clonal deletion, but the mechanisms by which they operate are not clear. Moreover, their role in central tolerance is obscured by redundancy among the Nr4a family members and by their reported functions in Treg generation and maintenance. Here we take advantage of competitive bone marrow chimeras and the OT-II/RIPmOVA model to show that Nr4a1 and Nr4a3 are essential for the upregulation of Bcl2l11/BIM and thymic clonal deletion by self-antigen.

View Article and Find Full Text PDF

Insights into Within-Host Evolution and Dynamics of Oral and Intestinal Streptococci Unveil Niche Adaptation.

Int J Mol Sci

December 2024

Division of Oral Microbiology and Immunology, Department of Operative Dentistry, Periodontology and Preventive Dentistry, Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital, 52074 Aachen, Germany.

The oral-gut axis is a complex system linking the oral cavity and gastrointestinal tract, impacting host health and microbial composition. This study investigates genetic changes and adaptive mechanisms employed by streptococci-one of the few genera capable of colonizing oral and intestinal niches-within the same individual. We conducted whole-genome sequencing (WGS) on 218 streptococcal isolates from saliva and fecal samples of 14 inflammatory bowel disease (IBD) patients and 12 healthy controls.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!