Mechanical behavior of pharmaceutical crystals directly impacts the formulation development and manufacturing of drug products. The understanding of crystal structure-mechanical behavior of pharmaceutical and molecular crystals has recently gained substantial attention among pharmaceutical and materials scientists with the advent of advanced nanomechanical testing instruments like nanoindentation. For the past few decades, instrumented nanoindentation was a popular technique for measuring the mechanical properties of thin films and small-length scale materials. More recently it is being implemented to investigate the mechanical properties of pharmaceutical crystals. Integration of correlative microscopy techniques and environmental control opened the door for advanced structure-property correlation under processing conditions. Preventing the degradation of active pharmaceutical ingredients from external factors such as humidity, temperature, or pressure is important during processing. This review deals with the recent developments in the synchronized nanomechanical measurements of pharmaceutical crystals toward the fast and effective development of high-quality pharmaceutical drug products. This review also summarizes some recent reports to intensify how one can design and control the nanomechanical properties of pharmaceutical solids. Measurement challenges and the scope for studying nanomechanical properties of pharmaceutical crystals using nanoindentation as a function of crystal structure and in turn to develop fundamental knowledge in the structure-property relationship with the implications for drug manufacturing and development are discussed in this review. This review further highlights recently developed capabilities in nanoindentation, for example, variable temperature nanoindentation testing, imaging of the indented volume, and nanoindentation coupled Raman spectroscopy that can offer new quantitative details on nanomechanical behavior of crystals and will play a decisive role in the development of coherent theories for nanomechanical study of pharmaceutical crystal.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.molpharmaceut.3c00441 | DOI Listing |
Small
January 2025
Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), San Sebastián, 20014, Spain.
Graphene is the first 2D atomic crystal, and its isolation heralded a new era in materials science with the emergence of several other atomically thin materials displaying multifunctional properties. The safety assessment of new materials is often something of an afterthought, but in the case of graphene, the initial isolation and characterization of the material was soon followed by the assessment of its potential impact on living systems. The Graphene Flagship project addressed the health and environmental aspects of graphene and other 2D materials, providing an instructive lesson in interdisciplinarity - from materials science to biology.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun 113001, China.
Chiral discrimination is an indispensable tool that has pivotal importance in the assignment of absolute configuration and determination of enantiomeric excess in chiral compounds. A series of enantiomerically pure -1,2-diaminocyclohexane (-DACH)-derived benzamides were first synthesized by simple chemical steps, and 14 variated derivatives have been assessed as NMR chiral solvating agents (CSAs) for discrimination of the signals of mandelic acid (MA) in H NMR analysis. The highly efficient chiral recognition of CSA on different substrates, including MAs, carboxylic acids, amino acid derivatives, and phosphoric acids (32 examples), was expanded via H, F, and P NMR spectroscopy.
View Article and Find Full Text PDFOrg Biomol Chem
January 2025
Jiangsu Key Laboratory of Bioactive Natural Product Research and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China.
(±)-Melichuniiones A and B (1 and 2), two novel enantiomeric pairs of lignan-phloroglucinol hybrids with an unprecedented beadlike core were isolated from the leaves of , together with new analogues 3-6. Compounds 1 and 2 possess a unique dispiro [furan-2,5'-cyclopenta[]furan-2',3''-furan] 5/5/5/5 tetracyclic skeleton. Their structures were established by extensive spectroscopic analyses, single crystal X-ray diffraction, and electronic circular dichroism (ECD) calculations.
View Article and Find Full Text PDFActa Pharm Sin B
December 2024
State Key Laboratory of Cellular Stress Biology and Fujian Provincial Key Laboratory of Innovative Drug Target Research, School of Pharmaceutical Science, Xiamen University, Xiamen 361102, China.
The orphan nuclear receptor Nur77 is emerging as an attractive target for cancer therapy, and activating Nur77's non-genotypic anticancer function has demonstrated strong therapeutic potential. However, few Nur77 site B ligands have been identified as excellent anticancer compounds. There are no co-crystal structures of effective anticancer agents at Nur77 site B, which greatly limits the development of novel Nur77 site B ligands.
View Article and Find Full Text PDFEnviron Sci Technol
January 2025
State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, P. R. China.
Liquid crystal monomers (LCMs) of different chemical structures were widely detected in various environmental matrices. However, their health risk evaluation is lacking. Herein, three representative LCMs were selected from 74 LCM candidates upon literature review and acute cytotoxicity evaluation, then were exposed to the three LCMs for 42 days at doses of 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!