Selective hydrogenation of olefins with water as the hydrogen source at ambient conditions is still a big challenge in the field of catalysis. Herein, the electrocatalytic hydrogenation of purely aliphatic and functionalized olefins was achieved by using graphdiyne based copper oxide quantum dots (Cu O/GDY) as cathodic electrodes and water as the hydrogen source, with high activity and selectivity in aqueous solution at high current density under ambient temperature and pressure. In particular, the sp-/sp -hybridized graphdiyne catalyst allows the selective hydrogenation of cis-trans isomeric olefins. The chemical and electronic structure of the GDY results in the incomplete charge transfer between GDY and Cu atoms to optimize the adsorption/desorption of the reaction intermediates and results in high reaction selectivity and activity for hydrogenation reactions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/anie.202310722 | DOI Listing |
Sci Total Environ
January 2025
Department of Chemistry, Physics, Environmental and Soil Sciences, University of Lleida - AGROTECNIO-CERCA Center, Rovira Roure 191, 25198 Lleida, Spain.
There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.
View Article and Find Full Text PDFTalanta
January 2025
Department of Materials and Environmental Technology, Tallinn University of Technology, Ehitajate tee 5, 19086, Tallinn, Estonia. Electronic address:
Ampicillin (AMP) ranks third among the top ten most frequently sold antibiotic combinations globally, raising concerns due to its extensive use. Improper disposal practices in agriculture, aquaculture, and healthcare have led to environmental contamination of water sources with elevated AMP levels. Current methods for detecting such contamination are costly, require sophisticated equipment, and depend on skilled personnel and unstable natural receptors.
View Article and Find Full Text PDFWater Res
January 2025
Georgia Tech Shenzhen Institute (GTSI), Tianjin University, Shenzhen 518067, China. Electronic address:
Nitrogen recovery from urine and CO utilization are both vital for achieving a circular economy and mitigating climate change. Divided engineering solutions have been proposed to address either problem, but there is still a lack of integrated technologies to simultaneously tackle the two tasks. We demonstrated CO-driven ion exchange for nitrogen recovery (CIXNR) from urine and evaluated the process in Malawi.
View Article and Find Full Text PDFSmall
January 2025
Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing, 400060, China.
Nanozyme-based colorimetric sensors are promising approaches for environmental monitoring, food safety, and medical diagnostics. However, developing novel nanozymes that exhibit high catalytic activity, good dispersion in aqueous solution, high sensitivity, selectivity, and stability is challenging. In this study, for the first time, single-atom iridium-doped carbon dot nanozymes (SA Ir-CDs) are synthesized via a simple in situ pyrolysis process.
View Article and Find Full Text PDFEnviron Sci Process Impacts
January 2025
Eberhard Karls University of Tübingen, Department of Geosciences, Schnarrenbergstraße 94-96, 72076 Tübingen, Germany.
Concentrations of pollutants like pharmaceuticals in soils typically decrease over time, though it often remains unclear whether this dissipation is caused by the transformation of the pollutant or a decreasing extractability. We developed a mathematical model that (1) explores the plausibility of different dissipation pathways, and (2) allows the quantification of concentration differences between aqueous soil extracts and soil solution. The model considers soil particles as uniform spheres, kinetic sorption towards an equilibrium (Freundlich model), and two dissipation pathways, irreversible transformation and mineralization (following 1 order kinetics) as well as the formation of non-extractable residues intraparticle diffusion.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!