We study human performance in two classical NP-hard optimization problems: Set Cover and Maximum Coverage. We suggest that Set Cover and Max Coverage are related to means selection problems that arise in human problem-solving and in pursuing multiple goals: The relationship between goals and means is expressed as a bipartite graph where edges between means and goals indicate which means can be used to achieve which goals. While these problems are believed to be computationally intractable in general, they become more tractable when the structure of the network resembles a tree. Thus, our main prediction is that people should perform better with goal systems that are more tree-like. We report three behavioral experiments which confirm this prediction. Our results suggest that combinatorial parameters that are instrumental to algorithm design can also be useful for understanding when and why people struggle to choose between multiple means to achieve multiple goals.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/cogs.13330 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!