The objective was to characterize transcriptome changes associated with elongation in bovine conceptuses during preimplantation stages. Nonlactating Holstein cows were euthanized 17 d after artificial insemination (AI) and the uterine horn ipsilateral to the CL was flushed with saline solution. Recovered conceptuses were classified as small (1.2 to 6.9 cm; n = 9), medium (10.5 to 16.0 cm; n = 9), or large (18.0 to 26.4 cm; n = 10). Total mRNA was extracted and subjected to transcriptome analyses using the Affymetrix Gene Chip Bovine array. Data were normalized using the GCRMA method and analyzed by robust regression using the Linear Models for Microarray library within Bioconductor in R. Transcripts with P ≤ 0.05 after adjustment for false discovery rate and fold change ≥1.5 were considered differentially expressed. Functional analyses were conducted using the Ingenuity Pathway Analysis platform. Comparisons between large versus small (LvsS), large versus medium (LvsM), and medium versus small (MvsS) conceptuses yielded a total of 634, 240, and 63 differentially expressed transcripts, respectively. Top canonical pathways of known involvement with embryo growth that were upregulated in large conceptuses included actin cytoskeleton (LvsS), integrin signaling (LvsS and LvsM), ephrin receptor (LvsS), mesenchymal transition by growth factor (LvsM), and regulation of calpain protease (LvsS). Transcripts involved with lipid metabolism pathways (LXR/RXR, FXR/RXR, hepatic fibrosis) were associated with the LvsS and LvsM, and some transcripts such as APOC2, APOH, APOM, RARA, RBP4, and PPARGC1A, were involved in these pathways. An overall network summary associated biological downstream effects of invasion of cells, proliferation of embryonic cells, and inhibition of organismal death in the LvsS. In conclusion, differently expressed transcripts in the LvsS comparison were associated with the cell growth, adhesion, and organismal development, although part of these findings could be attributed to differences in circulatory concentrations of progesterone of the cows that bore large and small conceptuses. The large and medium conceptuses developed under similar concentrations of progesterone and presented 240 differently expressed transcripts, associated with cell differentiation, metabolite regulation, and other biological processes.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3168/jds.2023-23398 | DOI Listing |
Sci Transl Med
January 2025
Division of Pediatric Hematology/Oncology, Boston Children's Hospital, Boston, MA 02115, USA.
Tissue-specific T cell immune responses play a critical role in maintaining organ health but can also drive immune pathology during both autoimmunity and alloimmunity. The mechanisms controlling intratissue T cell programming remain unclear. Here, we leveraged a nonhuman primate model of acute graft-versus-host disease (aGVHD) after allogeneic hematopoietic stem cell transplantation to probe the biological underpinnings of tissue-specific alloimmune disease using a comprehensive systems immunology approach including multiparameter flow cytometry, population-based transcriptional profiling, and multiplexed single-cell RNA sequencing and TCR sequencing.
View Article and Find Full Text PDFSci Transl Med
January 2025
Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA.
At this stage in the COVID-19 pandemic, most infections are "breakthrough" infections that occur in individuals with prior severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) exposure. To refine long-term vaccine strategies against emerging variants, we examined both innate and adaptive immunity in breakthrough infections. We performed single-cell transcriptomic, proteomic, and functional profiling of primary and breakthrough infections to compare immune responses from unvaccinated and vaccinated individuals during the SARS-CoV-2 Delta wave.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Institute of Biochemistry and Molecular Biology, Hengyang Medical School, University of South China; National Health Commission Key Laboratory of Birth Defect Research and Preventio, Hunan Provincial Maternal and Child Health Care Hospital;
Both DNA replication and RNA transcription utilize genomic DNA as their template, necessitating spatial and temporal separation of these processes. Conflicts between the replication and transcription machinery, termed transcription-replication conflicts (TRCs), pose a considerable risk to genome stability, a critical factor in cancer development. While several factors regulating these collisions have been identified, pinpointing primary causes remains difficult due to limited tools for direct visualization and clear interpretation.
View Article and Find Full Text PDFBioinformatics
January 2025
Department of Medical Bioinformatics, University Medical Center Göttingen, Göttingen, 37099, Germany.
Motivation: Histone modifications play an important role in transcription regulation. Although the general importance of some histone modifications for transcription regulation has been previously established, the relevance of others and their interaction is subject to ongoing research. By training Machine Learning models to predict a gene's expression and explaining their decision making process, we can get hints on how histone modifications affect transcription.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Department of Pathology, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. The roles of the transcription factor special AT-rich binding protein-2 (SATB2) and β-catenin in PDAC have been a subject of controversy. We aimed to assess the diagnostic and prognostic impact of SATB2 and β-catenin in PDAC.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!