Locomotion rhythm makes power and speed.

Sci Rep

Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC, 27708-0300, USA.

Published: August 2023

This article addresses two questions, why certain animals (frogs, breaststroke swimmers, hovering fliers, jellyfish) push rapidly against the surrounding fluid and then reach forward slowly, and whether this rhythm of propulsion is a manifestation of the universal phenomenon of design evolution in nature. Emphasis is on the distribution of time periods of locomotion in which, during the driving phase of cyclic movement (the motive stroke, phases 1 and 2, in alternating sequence with the dissipative stroke, phase 3), the work is generated (phase 1) and dissipated (phase 2). The relative lengths of the characteristic times t and t of the phases 1 and 2, are predicted. The relative duration of the proposed three phases of a cycle is the 'rhythm'. The analysis is based on a model of how the effective cross-sections of the stroking body parts impact the surrounding medium, water, or air, and the total power required to account for the kinetic energy losses during phases 2 and 3, which are due to drag forces posed by the surrounding medium. The body configuration (limbs' cross-sections) determines the limbs' velocities that maximize mean power, and the times t and t within the motive stroke. Emphasis is placed on the freedom to change the evolving design. Freedom is represented in two ways: the number of degrees of freedom in changing the dimensions of the model and its deformation in time, and the effect that evolutionary changes have on the access that the body has to its available space. Freedom to change the locomotion design leads to greater power and speed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462695PMC
http://dx.doi.org/10.1038/s41598-023-41023-6DOI Listing

Publication Analysis

Top Keywords

power speed
8
motive stroke
8
surrounding medium
8
freedom change
8
locomotion rhythm
4
power
4
rhythm power
4
speed article
4
article addresses
4
addresses questions
4

Similar Publications

One of the primary challenges faced by small rubbing filament machines is the significant variability in material sizes, particularly in the feeding direction. This variability complicates the processing of locally baled straw with a single device. To address this issue, an adjustable feeding and bale-breaking device was developed and tested to enhance the filamentous performance of baled straw.

View Article and Find Full Text PDF

Three-dimensional diffractive acoustic tomography.

Nat Commun

January 2025

Department of Biomedical Engineering, Duke University, Durham, NC, USA.

Acoustically probing biological tissues with light or sound, photoacoustic and ultrasound imaging can provide anatomical, functional, and/or molecular information at depths far beyond the optical diffusion limit. However, most photoacoustic and ultrasound imaging systems rely on linear-array transducers with elevational focusing and are limited to two-dimensional imaging with anisotropic resolutions. Here, we present three-dimensional diffractive acoustic tomography (3D-DAT), which uses an off-the-shelf linear-array transducer with single-slit acoustic diffraction.

View Article and Find Full Text PDF

Online ensemble model compression for nonstationary data stream learning.

Neural Netw

January 2025

School of Computer Science, University of Birmingham, Edgbaston, Birmingham, B15 2TT, United Kingdom.

Learning from data streams that emerge from nonstationary environments has many real-world applications and poses various challenges. A key characteristic of such a task is the varying nature of the underlying data distributions over time (concept drifts). However, the most common type of data stream learning approach are ensemble approaches, which involve the training of multiple base learners.

View Article and Find Full Text PDF
Article Synopsis
  • Multimodal sensing using soft body dynamics is essential for controlling soft robotic movements, particularly through the imitation of whisker dynamics.
  • The study introduces a multitasking electronic brush (e-brush) featuring four integrated pressure sensors capable of monitoring motion parameters like speed, force, slip, and surface interactions with low pressure sensitivity.
  • A reservoir computing algorithm is employed to accurately extract and analyze these motion parameters, successfully demonstrating the brush's ability to track handwriting movements as a proof of concept.
View Article and Find Full Text PDF

A numerical assessment of the heterogeneous effects of innovative shroud profiles for horizontal axis wind turbine.

Heliyon

January 2025

Mechanical Power Engineering Department, Faculty of Engineering - Mataria, Helwan University, Cairo, 11718, Egypt.

Wind turbine control is critical in power generation from wind, thus assuring great efficiency and cost-effectiveness. This has been a subject of intense research, and its advancements are critical to developing even better and efficient wind turbines. This research looks at several passive flow control mechanisms for horizontal wind turbines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!