AI Article Synopsis

  • * The study uses transgenic mice to mimic human antibody diversity and shows that an immunization strategy can enhance B cell memory targeting the conserved CD4 binding site on HIV.
  • * Findings suggest that allowing low affinity B cell clones to thrive facilitates the discovery of antibody targets, ultimately benefiting vaccine development against HIV.

Article Abstract

Low affinity is common for germline B cell receptors (BCR) seeding development of broadly neutralizing antibodies (bnAbs) that engage hypervariable viruses, including HIV. Antibody affinity selection is also non-homogenizing, insuring the survival of low affinity B cell clones. To explore whether this provides a natural window for expanding human B cell lineages against conserved vaccine targets, we deploy transgenic mice mimicking human antibody diversity and somatic hypermutation (SHM) and immunize with simple monomeric HIV glycoprotein envelope immunogens. We report an immunization regimen that focuses B cell memory upon the conserved CD4 binding site (CD4bs) through both conventional affinity maturation and reproducible expansion of low affinity BCR clones with public patterns in SHM. In the latter instance, SHM facilitates target acquisition by decreasing binding strength. This suggests that permissive B cell selection enables the discovery of antibody epitopes, in this case an HIV bnAb site.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462694PMC
http://dx.doi.org/10.1038/s41467-023-40918-2DOI Listing

Publication Analysis

Top Keywords

low affinity
12
target acquisition
8
cell
6
affinity
6
engaging hiv
4
hiv vaccine
4
vaccine target
4
low
4
acquisition low
4
low cell
4

Similar Publications

Introduction: Squamous cell carcinoma is a major public health concern, with traditional treatments such as surgery, chemotherapy, and radiation therapy frequently resulting in significant side effects. Immunotherapy targeting checkpoints such as PD-1, CTLA-4, and B7- H3 provides a more specific approach but incurs high costs due to monoclonal antibodies.

Aim And Objective: This study aims to investigate the potential of natural flavonoids as lowtoxicity, small molecule-based alternatives targeting the PD-1 immunological checkpoint for SCC treatment.

View Article and Find Full Text PDF

Exploring caffeine as a disruptor of membrane integrity and genomic stability in Staphylococcus aureus: functional and in silico analysis.

Arch Microbiol

January 2025

School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Innovation Campus, Kudlu Gate, Hosur Rd, Bengaluru, 560 068, India.

To explore the mechanistic underpinnings of caffeine as a potent antibacterial against Staphylococcus aureus ATCC 25923 via in vitro functional assays, whole-genome sequencing, and in silico docking studies. In vitro studies established that caffeine's minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 is 0.

View Article and Find Full Text PDF

Development of Tc-Labeled Complexes with a Niraparib HYNIC Derivative for PARP-Positive Tumor Imaging.

Mol Pharm

January 2025

Key Laboratory of Radiopharmaceuticals of the Ministry of Education, NMPA Key Laboratory for Research and Evaluation of Radiopharmaceuticals (National Medical Products Administration), College of Chemistry, Beijing Normal University, Beijing 100875, P. R. China.

As an enzyme that plays an important role in DNA repair, poly(ADP-ribose) polymerase-1 (PARP-1) has become a popular target for cancer therapy. Nuclear medicine molecular imaging technology, supplemented by radiolabeled PARP-1 inhibitors, can accurately determine the expression level of PARP-1 at lesion sites to help patients choose an appropriate treatment plan. In this work, niraparib was modified with a hydrazinonicotinamide (HYNIC) group to generate the ligand NPBHYNIC, which has an affinity (IC) of 450.

View Article and Find Full Text PDF

Copper-based catalysts are the choice for producing multi-carbon products (C2+) during CO2 electroreduction (CO2RR), where the Cu0Cuδ+ pair sites are proposed to be synergistic hotspots for C-C coupling. Maintaining their dynamic stability requires precise control over electron affinity and anion vacancy formation energy, posing significant challenges. Here, we present an in-situ reconstruction strategy to create dynamically stable Cu0Cu0.

View Article and Find Full Text PDF

Cross-feeding of amino acid pathway intermediates is common in co-cultures of auxotrophic Escherichia coli.

Metab Eng

January 2025

Department of Chemical Engineering, University of Michigan, Ann Arbor, Michigan 48109, USA. Electronic address:

Amino acid auxotrophy refers to an organism's inability to synthesize one or more amino acids that are required for cell growth. In microbiome research, co-cultures of amino acid auxotrophs are often used to investigate metabolite cross-feeding interactions and model community dynamics. Thus far, it has been implicitly assumed that amino acids are mainly cross-fed between these auxotrophs.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!