Cellular glycosylation is characterized by chemical complexity and heterogeneity, which is challenging to reproduce synthetically. Here we show chemoenzymatic synthesis on phage to produce a genetically-encoded liquid glycan array (LiGA) of complex type N-glycans. Implementing the approach involved by ligating an azide-containing sialylglycosyl-asparagine to phage functionalized with 50-1000 copies of dibenzocyclooctyne. The resulting intermediate can be trimmed by glycosidases and extended by glycosyltransferases yielding a phage library with different N-glycans. Post-reaction analysis by MALDI-TOF MS allows rigorous characterization of N-glycan structure and mean density, which are both encoded in the phage DNA. Use of this LiGA with fifteen glycan-binding proteins, including CD22 or DC-SIGN on cells, reveals optimal structure/density combinations for recognition. Injection of the LiGA into mice identifies glycoconjugates with structures and avidity necessary for enrichment in specific organs. This work provides a quantitative evaluation of the interaction of complex N-glycans with GBPs in vitro and in vivo.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462762PMC
http://dx.doi.org/10.1038/s41467-023-40900-yDOI Listing

Publication Analysis

Top Keywords

chemoenzymatic synthesis
8
synthesis genetically-encoded
4
genetically-encoded multivalent
4
multivalent liquid
4
liquid n-glycan
4
n-glycan arrays
4
arrays cellular
4
cellular glycosylation
4
glycosylation characterized
4
characterized chemical
4

Similar Publications

Natural Cyclic Peptides: Synthetic Strategies and Biomedical Applications.

Biomedicines

January 2025

Department of Chemistry and Biochemistry, Augusta University, Augusta, GA 30912, USA.

Natural cyclic peptides, a diverse class of bioactive compounds, have been isolated from various natural sources and are renowned for their extensive structural variability and broad spectrum of medicinal properties. Over 40 cyclic peptides or their derivatives are currently approved as medicines, underscoring their significant therapeutic potential. These compounds are employed in diverse roles, including antibiotics, antifungals, antiparasitics, immune modulators, and anti-inflammatory agents.

View Article and Find Full Text PDF

Recent advances in biocatalytic and chemoenzymatic synthesis of oligonucleotides.

Chembiochem

January 2025

Institut Pasteur, Department of Structural Biology and Chemistry, 28 Rue du Dr. Roux, 75015, Paris, FRANCE.

Access to synthetic oligonucleotides is crucial for applications in diagnostics, therapeutics, synthetic biology, and nanotechnology. Traditional solid phase synthesis is limited by sequence length and complexities, low yields, high costs and poor sustainability. Similarly, polymerase-based approaches such as in vitro transcription and primer extension reactions do not permit any control on the positioning of modifications and display poor substrate tolerance.

View Article and Find Full Text PDF

Enzymatic ester bond formation strategies in fungal macrolide skeletons.

Nat Prod Rep

January 2025

College of Pharmaceutical Sciences, Southwest University, 400715 Chongqing, China.

Covering: up to August 2024Macrolides, the core skeletons of numerous marketed drugs and bioactive natural products, have garnered considerable scientific interest owing to their structural diversity and broad spectrum of pharmaceutical activities. The formation of intramolecular ester bonds is a critical biocatalytic step in constructing macrolide skeletons. Here, we summarised enzymatic ester bond formation strategies in fungal polyketide (PK)-type, nonribosomal peptide (NRP)-type, and PK-NRP hybrid-type macrolides.

View Article and Find Full Text PDF

Biocatalytic Hydrogenation of Biomass-Derived Furan Aldehydes to Alcohols.

J Agric Food Chem

January 2025

College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211800, China.

The biomass-derived furan aldehydes furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile platform chemicals used to produce various value-added chemicals through further valorization processes. Selectively reducing C═O in FF and HMF molecules to form furfuryl alcohol (FAL) and 2,5-bis(hydroxymethyl)furan (BHMF), represents an important research field in upgrading biomass-based furan compounds. Currently, the reduction of furan aldehydes to furan alcohols through chemical transformation often leads to unavoidable environmental issues and the formation of potential byproducts.

View Article and Find Full Text PDF

Protein Fusion of Biosynthetic Enzymes and a Thermo-Responsive Polypeptide Expedites Facile Access to Biocatalysts for Nucleotide Sugars.

Chembiochem

January 2025

National Glycoengineering Research Center, Shandong Provincial Key Laboratory of Glycochemistry and Glycobiology, Shandong University, Qingdao, Shandong, 266237, P. R China.

Nucleotide sugars (NSs) are essential building blocks for the enzymatic assembly of glycans. In this study, we established a preparation and recycling avenue to the biocatalysts for the enzymatic synthesis of NSs. This approach involves fusing two enzymes into a bifunctional chimera and using elastin-like polypeptides (ET64) as a purification tag, which allows for easy recovery of these biocatalysts without the need for chromatography.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!