AI Article Synopsis

  • Structural anisotropy in crystals affects how light travels, especially in the infrared region, where it interacts with phonon polaritons (PhPs), which are quasiparticles formed by light and lattice vibrations.
  • Recent research on the monoclinic crystal β-GaO (bGO) reveals that PhPs can exhibit highly asymmetric propagation, which researchers studied using advanced techniques like scanning near-field optical microscopy.
  • The study demonstrates that adjusting the laser orientation, the size of nano-antennas, and the frequency of light can significantly influence the behavior of these phonon polaritons, paving the way for practical applications in low-symmetry crystals.

Article Abstract

Structural anisotropy in crystals is crucial for controlling light propagation, particularly in the infrared spectral regime where optical frequencies overlap with crystalline lattice resonances, enabling light-matter coupled quasiparticles called phonon polaritons (PhPs). Exploring PhPs in anisotropic materials like hBN and MoO has led to advancements in light confinement and manipulation. In a recent study, PhPs in the monoclinic crystal β-GaO (bGO) were shown to exhibit strongly asymmetric propagation with a frequency dispersive optical axis. Here, using scanning near-field optical microscopy (s-SNOM), we directly image the symmetry-broken propagation of hyperbolic shear polaritons in bGO. Further, we demonstrate the control and enhancement of shear-induced propagation asymmetry by varying the incident laser orientation and polariton momentum using different sizes of nano-antennas. Finally, we observe significant rotation of the hyperbola axis by changing the frequency of incident light. Our findings lay the groundwork for the widespread utilization and implementation of polaritons in low-symmetry crystals.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462611PMC
http://dx.doi.org/10.1038/s41467-023-40789-7DOI Listing

Publication Analysis

Top Keywords

propagation asymmetry
8
hyperbolic shear
8
shear polaritons
8
controlling propagation
4
asymmetry hyperbolic
4
polaritons
4
polaritons beta-gallium
4
beta-gallium oxide
4
oxide structural
4
structural anisotropy
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!