Spin-orbit Rabi oscillations in optically synthesized magnetic fields.

Light Sci Appl

Department of Optoelectronic Engineering, Jinan University, Guangzhou, 510632, China.

Published: August 2023

Rabi oscillation has been proven to be one of the cornerstones of quantum mechanics, triggering substantial investigations in different disciplines and various important applications both in the classical and quantum regimes. So far, two independent classes of wave states in the Rabi oscillations have been revealed as spin waves and orbital waves, while a Rabi wave state simultaneously merging the spin and orbital angular momentum has remained elusive. Here we report on the experimental and theoretical observation and control of spin-orbit-coupled Rabi oscillations in the higher-order regime of light. We constitute a pseudo spin-1/2 formalism and optically synthesize a magnetization vector through light-crystal interaction. We observe simultaneous oscillations of these ingredients in weak and strong coupling regimes, which are effectively controlled by a beam-dependent synthetic magnetic field. We introduce an electrically tunable platform, allowing fine control of transition between different oscillatory modes, resulting in an emission of orbital-angular-momentum beams with tunable topological structures. Our results constitute a general framework to explore spin-orbit couplings in the higher-order regime, offering routes to manipulating the spin and orbital angular momentum in three and four dimensions. The close analogy with the Pauli equation in quantum mechanics, nonlinear optics, etc., implies that the demonstrated concept can be readily generalized to different disciplines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10462765PMC
http://dx.doi.org/10.1038/s41377-023-01238-8DOI Listing

Publication Analysis

Top Keywords

rabi oscillations
12
quantum mechanics
8
spin orbital
8
orbital angular
8
angular momentum
8
higher-order regime
8
spin-orbit rabi
4
oscillations
4
oscillations optically
4
optically synthesized
4

Similar Publications

Passive and active suppression of transduced noise in silicon spin qubits.

Nat Commun

January 2025

Department of Physics and Astronomy, and Institute of Applied Physics, Seoul National University, Seoul, Korea.

Addressing and mitigating decoherence sources plays an essential role in the development of a scalable quantum computing system, which requires low gate errors to be consistently maintained throughout the circuit execution. While nuclear spin-free materials, such as isotopically purified silicon, exhibit intrinsically promising coherence properties for electron spin qubits, the omnipresent charge noise, when converted to magnetic noise under a strong magnetic field gradient, often hinders stable qubit operation within a time frame comparable to the data acquisition time. Here, we demonstrate both open- and closed-loop suppression techniques for the transduced noise in silicon spin qubits, resulting in a more than two-fold (ten-fold) improvement of the inhomogeneous coherence time (Rabi oscillation quality) that leads to a single-qubit gate fidelity of over 99.

View Article and Find Full Text PDF

Gatemons are superconducting qubits resembling transmons, with a gate-tunable semiconducting weak link as the Josephson element. Here, we report a gatemon device featuring an aluminum microwave circuit on a Ge/SiGe heterostructure embedding a Ge quantum well. Owing to the superconducting proximity effect, the high-mobility two-dimensional hole gas confined in this well provides a gate-tunable superconducting weak link between two Al contacts.

View Article and Find Full Text PDF

The interface with spin defects in hexagonal boron nitride has recently become a promising platform and has shown great potential in a wide range of quantum technologies. Varieties of spin properties of - defects in hexagonal boron nitride (hBN) have been researched widely and deeply, like their structure and coherent control. However, little is known about the influence of off-axis magnetic fields on the coherence properties of - defects in hBN.

View Article and Find Full Text PDF

Strong exciton-photon coupling in self-hybridized organic-inorganic lead halide perovskite microcavities.

Nanophotonics

November 2023

Department of Semiconductor Physics and Energy Harvest Storage Research Center, University of Ulsan, Ulsan 44610, South Korea.

Controlling coherent light-matter interactions in semiconductor microcavities is at the heart of the next-generation solid-state polaritonic devices. Organic-inorganic hybrid perovskites are potential materials for room-temperature polaritonics owing to their high exciton oscillator strengths and large exciton binding energies. Herein, we report on strong exciton-photon coupling in the micro-platelet and micro-ribbon shaped methylammonium lead bromide single crystals.

View Article and Find Full Text PDF
Article Synopsis
  • Strong coupling in photonic microstructures shows potential for applications in spectral control and optical sensing.
  • The study explores coupling effects in a photonic multilayer featuring a nanocavity on a one-dimensional photonic crystal, with results indicating that the spectral profile can be adjusted by changing the dielectric layer's thickness.
  • The research identifies a strong coupling regime with significant Rabi splitting (36 meV) and provides a method for tuning coupling strength by modifying the metallic film's thickness, which has implications for future optical coupling technologies.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!