Neonatal hypoxic-ischemic brain damage (HIBD) is a prominent contributor to both immediate mortality and long-term impairment in newborns. The elusive nature of the underlying mechanisms responsible for neonatal HIBD presents a significant obstacle in the effective clinical application of numerous pharmaceutical interventions. This comprehensive review aims to concentrate on the potential neuroprotective agents that have demonstrated efficacy in addressing various pathogenic factors associated with neonatal HIBD, encompassing oxidative stress, calcium overload, mitochondrial dysfunction, endoplasmic reticulum stress, inflammatory response, and apoptosis. In this review, we conducted an analysis of the precise molecular pathways by which these drugs elicit neuroprotective effects in animal models of neonatal hypoxic-ischemic brain injury (HIBD). Our objective was to provide a comprehensive overview of potential neuroprotective agents for the treatment of neonatal HIBD in animal experiments, with the ultimate goal of enhancing the feasibility of clinical translation and establishing a solid theoretical foundation for the clinical management of neonatal HIBD.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ejphar.2023.176003 | DOI Listing |
Epilepsia
December 2024
Department of Physiology, School of Basic Medical Sciences, Wuhan University, Wuhan, China.
Objective: Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal mortality, resulting in brain injury and persistent seizures that can last into the late neonatal period and beyond. Effective treatments and interventions for infants affected by hypoxia-ischemia remain lacking. Clinical investigations have indicated an elevation of nuclear factor of activated T cells 5 (NFAT5) in whole blood from umbilical cords of severely affected HIBD infants with epilepsy.
View Article and Find Full Text PDFNan Fang Yi Ke Da Xue Xue Bao
October 2024
Department of Human Anatomy & Histology and Embryology, School of Basic Medical Sciences, Kunming Medical University, Kunming 650500, China.
Objective: To investigate the mechanism behind the protective effects of gastrodin against microglia-mediated inflammatory responses following hypoxic-ischemic brain damage (HIBD) in neonatal mice.
Methods: Thirty-six 10-day-old C57BL/6J mice were randomized into sham-operated group, HIBD (induced by ligation of the left common carotid artery followed by hypoxia for 40 min) group, and HIBD with gastrodin treatment groups (=12). In gastrodin treatment group, 100 mg/kg gastrodin was injected intraperitoneally 1 h before and at 2 and 12 h after hypoxia.
Nan Fang Yi Ke Da Xue Xue Bao
September 2024
Department of Human Anatomy and Histology & Embryology, Faculty of Basic Medical Sciences, Kunming Medical University, 1168 West Chunrong Road, Kunming, 650500, China.
Objective: To investigate the mechanism of gastrodin for inhibiting microglia-mediated inflammation after hypoxicischemic brain damage (HIBD) in neonatal rats.
Methods: Thirty-nine 3-day-old SD rats were randomly divided into sham group, HIBD group and gastrodin treatment group. Western blotting was used to detect the expressions of TNF-α, IL-1β, IL-10 and TGF- β1 in the corpus callosum of the rats.
Brain Behav
October 2024
Sun Yat-sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
Introduction: The presence of hypoxic-ischemic brain damage (HIBD) in neonates triggers a strong neuroinflammatory reaction. Pyroptosis, a programmed cell death mechanism associated with inflammation, plays a crucial role in HIBD. Pyruvate kinase M2 (PKM2) plays a significant role in connecting metabolic processes and inflammatory responses, but whether it affects hippocampus pyroptosis in HIBD is unclear.
View Article and Find Full Text PDFInt Immunopharmacol
December 2024
Department of Neonatology, the Second School of Medicine, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Perinatal Medicine of Wenzhou, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Key Laboratory of Structural Malformations in Children of Zhejiang Province, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China; Zhejiang Provincial Clinical Research Center for Pediatric Disease, the Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China. Electronic address:
Hypoxic-ischemic brain damage (HIBD) is a leading cause of neonatal death and neurological dysfunction for which no particularly effective treatment is available. Stem cells possess multi-directional differentiation potential and can secrete a variety of cytokines. They not only have the ability to replace tissue and repair lesions but also improve neurological damage caused by HIBD through paracrine mechanisms, including anti-apoptosis, reduction of inflammation, and promotion of endogenous repair.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!