The incorrect disposal of textile dyes, such as Reactive Black 5 (RB5), causes several problems for living beings and the quality of the environment. Nanobiocomposites (NBC) produced from endophytic fungi (potentially remediation dyes-agents) and magnetic nanoparticles have high biotechnological potential due to their superparamagnetic behavior, which would allow their recovery through the magnetic field after the bioremediation process. This work aimed to obtain a new nanobiocomposite from the interaction of magnetite nanoparticles (FeO) with the endophyte Aspergillus flavus (Af-CL-7) to evaluate its bioremediation capacity and to reduce the toxicity of RB5 and its reuse. Before obtaining the NBC, Af-CL-7 showed discoloration of RB5 and it was tolerant to all tested concentrations of this dye. The discovery of the nanobiocomposite textile dye bioremediator product presents a significant environmental advantage by addressing the issue of water pollution caused by textile dyes. The NBC called Af-FeO was successfully obtained with the magnetized endophyte, and their magnetic properties were verified by VSM analysis and by action of magnetic fields generated by Nd-Fe-B magnets SEM analyzes showed that the nanoparticles did not cause any damage to the hypha morphology, and TEM analyzes confirmed the presence of nanoparticles in the fungus wall and also inside the cell. The NBC Af-FeO and Af-CL-7 showed, respectively, 96.1% and 92.2% of RB5 discoloration in the first use, 91.1% e 86.2% of discoloration in the validation test, and 89.0% in NBC reuse. In the toxicological bioassay with Lactuca sativa seeds, NBC showed a positive reduction in the toxicity of RB5 after treatment, allowing the hypocotyl growth to be statistically similar to the control with water. Thus, we highlight the promising obtaining process of NBC that could be applied in bioremediation of contaminated waters, wherein the industrial economic cost will depend on the fermentation efficiency, biomass production and nanoparticle synthesis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2023.139956DOI Listing

Publication Analysis

Top Keywords

aspergillus flavus
8
magnetic nanoparticles
8
nanoparticles feo
8
textile dyes
8
toxicity rb5
8
nbc
7
magnetic
5
nanoparticles
5
rb5
5
synthesis characterization
4

Similar Publications

Detection, quantification, and characterization of airborne Aspergillus flavus within the corn canopy.

Mycotoxin Res

January 2025

ARS, National Biological Control Laboratory, 59 Lee Road, Stoneville, MS, 38776, USA.

Aflatoxin contamination of corn can occur when developing kernels are infected by the plant pathogen Aspergillus flavus. One route of infection is from airborne conidia. We executed a series of experiments within the corn canopy during two growing seasons and in two states to document the abundance and dynamics of the airborne A.

View Article and Find Full Text PDF

Background: This study employed melanin synthesized by Aspergillus flavus and Aspergillus carbonarius to inhibit the production of mycotoxins and bioremediation of heavy metals (HMs).

Methods: First, twenty fungal isolates were obtained from soil samples, and were evaluated to produce melanin. The melanin of the most potent producers has undergone several confirmatory experiments, including, Dihydroxyphenylalanine (DOPA)-inhibitor-kojic acid pathway detection, High-performance liquid chromatography (HPLC), Fourier-transform infrared (FTIR) and Nuclear magnetic resonance (NMR).

View Article and Find Full Text PDF

Chemical profile changes in Peanut seeds infected with aspergillus flavus via widely targeted metabolomics.

Food Chem

January 2025

Crops Research Institute, Guangdong Academy of Agricultural Sciences, Guangdong Provincial Key Laboratory of Crop Genetic Improvement, South China Peanut Sub-Center of National Center of Oilseed Crops Improvement, Guangzhou, Guangdong Province 510640, China. Electronic address:

Peanut seeds are enriched with protein and fatty acids, making them susceptible to infection by Aspergillus flavus (A. flavus). The infected seeds are harmful to human health due to the aflatoxin contamination.

View Article and Find Full Text PDF

Biodegradation of azo dyes by Aspergillus flavus and its bioremediation potential using seed germination efficiency.

BMC Microbiol

January 2025

Department of Biological and Geological Sciences, Faculty of Education, Ain Shams University, Cairo, 11341, Egypt.

The worldwide textile industry extensively uses azo dyes, which pose serious health and environmental risks. Effective cleanup is necessary but challenging. Developing bioremediation methods for textile effluents will improve color removal efficiency.

View Article and Find Full Text PDF

The isolated Aspergillus flavus NSRN22 was used for green synthesis of silver and selenium nanoparticles (AgNPs and SeNPs). New food packaging films produced by combining each type of NPs with chitosan (CS) or sodium alginate (SA) were characterized. Transmission electron microscopy revealed that the average particle size was lower in case of AgNPs (9 to 14.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!