Making Science Education More Accessible: A Case Study of TikTok's Utility as a Science Communication Tool.

Neuroscience

Nancy Pritzker Laboratory, Department of Psychiatry & Behavioral Sciences, Stanford University, Palo Alto, CA 94306, USA. Electronic address:

Published: October 2023

Social media has revolutionized science communication, allowing for rapid dissemination of science-related content to the public. In recent years, video platforms like TikTok and Instagram have implemented recommendation algorithms that track users' interests andsuggest personalized videos. As a result, these apps have become powerful tools for public messaging, facilitating access to audiences that are naturally curious about science. In 2020 I began uploading educational science videos to TikTok which have collectively accumulated more than 48 million views and 8 million "likes." Here I present an analysis of video metrics collected from the TikTok app for a random sampling of 150 videos, searching for factors that predict the number of views a video receives and the level of viewer engagement. Videos with higher view counts were liked and shared at higher rates and sustained viewer attention for longer. Properties like hashtags, sounds, and effects did not significantly influence video views. Interestingly, videos summarizing research papers received the highest levels of engagement, potentially reflecting high demand from lay audiences who are traditionally unable to access scientific literature. Finally, I present survey data demonstrating that 84% of users report feeling more trustful of science & scientists after following this account. Although the generalizability of these findings is limited, the results offer insights into the factors that drive video performance on TikTok and how users engage with scientific content on social media. These findings may help science communicators more effectively reach wider audiences and promote science literacy in new and innovative ways.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.neuroscience.2023.08.021DOI Listing

Publication Analysis

Top Keywords

science communication
8
social media
8
science
7
video
5
videos
5
making science
4
science education
4
education accessible
4
accessible case
4
case study
4

Similar Publications

Characterization of the Micro-Morphology and Compositional Distribution of Chang'e-5 Lunar Soil Mineral Surfaces Using TOF-SIMS.

Adv Sci (Weinh)

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing, 100081, China.

The lunar soil samples returned by China's Chang'e-5 (CE-5) contain valuable information on geological evolutions on the Moon. Herein, by employing high-resolution time-of-flight secondary ion mass spectrometry (TOF-SIMS), five rock chip samples from the CE-5 lunar soil are characterized in-depth, which reveal micro-morphological and compositional features. From the elemental/molecular ion distribution images, minerals such as pyroxene, ilmenite, feldspar, K-rich glass, silica, and silicate minerals are identified, along with their occurrence states and distribution results.

View Article and Find Full Text PDF

The rapid and efficient bone regeneration is still in unsatisfactory outcomes, demonstrating alternative strategy and molecular mechanism is necessary. Nanoscale biomaterials have shown some promising results in enhancing bone regeneration, however, the detailed interaction mechanism between nanomaterial and cells/tissue formation is not clear. Herein, a molecular-based inorganic-organic nanomaterial poly(citrate-siloxane) (PCS) is reported which can rapidly enhance osteogenic differentiation and bone formation through a special interaction with the cellular surface communication network factor 3 (CCN3), further activating the Wnt10b/β-catenin signaling pathway.

View Article and Find Full Text PDF

2D Perovskite Heterojunction-Based Self-Powered Polarized Photodetectors with Controllable Polarization Ratio Enabled by Ferro-Pyro-Phototronic Effect.

Adv Sci (Weinh)

January 2025

Hebei Key Laboratory of Photo-Electricity Information and Materials, College of Physics Science and Technology, Hebei University, Baoding, 071002, P. R. China.

Metal halide perovskites (MHPs) are commonly used in polarization-sensitive photodetectors (PDs) for applications such as polarization imaging, remote sensing, and optical communication. Although various methods exist to adjust the polarization-sensitive photocurrent, a universal and effective approach for continuous control of MHPs' optoelectronic and polarized properties is lacking. A universal strategy to electrically modulate the polarization ratio (PR) of self-powered polarized PDs using the ferro-pyro-phototronic effect (FPPE) in 2D perovskites is presented.

View Article and Find Full Text PDF

Exploring microfluidics-based organoid interactions through analysis of albumin secretion.

Lab Chip

January 2025

State Key Laboratory of Fine Chemicals, Department of Pharmaceutical Engineering, School of Chemical Engineering, Dalian University of Technology, #2 Linggong Road, Dalian, 116024, China.

Organoids-on-a-chip exhibit significant potential for advancing disease modeling, drug screening, and precision medicine, largely due to their capacity to facilitate interactions among organoids. However, the influence of chip design on these interactions remains poorly understood, primarily due to our limited knowledge of the mediators of communication and the complexity of interaction dynamics. This study demonstrates that analyzing albumin secretion from liver organoids within an organoids-on-a-chip system can provide a measure of the interaction intensity among organoids, offering valuable insights into how chip design influences these interactions.

View Article and Find Full Text PDF

Gesture-controlled reconfigurable metasurface system based on surface electromyography for real-time electromagnetic wave manipulation.

Nanophotonics

January 2025

Key Laboratory for Information Science of Electromagnetic Waves, School of Information Science and Technology, Fudan University, Shanghai 200433, China.

Gesture recognition plays a significant role in human-machine interaction (HMI) system. This paper proposes a gesture-controlled reconfigurable metasurface system based on surface electromyography (sEMG) for real-time beam deflection and polarization conversion. By recognizing the sEMG signals of user gestures through a pre-trained convolutional neural network (CNN) model, the system dynamically modulates the metasurface, enabling precise control of the deflection direction and polarization state of electromagnetic waves.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!