Staphylococcus aureus is a gram-positive bacterium that can easily cause outbreaks of food-borne diseases. In this work, a signal-enhanced three-dimensional paper-based photoelectrochemical (PEC) aptsensor for the rapid and sensitive determination of S. aureus was developed. Specifically, gold nanoparticles (AuNPs) were electrodeposited on a paper-based working electrode to provide binding sites for a sulfhydryl-functionalized aptamer. Subsequently, S. aureus was captured with high specificity by a carboxyl-functionalized aptamer modified with amino-functionalized AgBiS nanoflowers (NH-AgBiS NFs), which functionalized as PEC probes that generated strong photocurrent under irradiation with 980-nm light. By exploiting the "aptamer-target-aptamer" PEC sensing platform, the rapid and ultrasensitive detection of S. aureus was achieved. The sensor had a wide linear range of 20 to 2 × 10 CFU/mL and low limit of detection of 4 CFU/mL. Further, the applicability of the as-prepared aptsensor was successfully certified for the analysis of pork samples artificially contaminated with S. aureus.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.talanta.2023.125128 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!