Monolithic 3D structural-substrate SERS sensing platform for ultrasensitive and highly-specific analysis of trace bisphenol A.

Talanta

Xiamen Key Laboratory of Food and Drug Safety, College of Environment and Public Health, Xiamen Huaxia University, Xiamen, 361024, PR China. Electronic address:

Published: January 2024

Constructing advanced substrates with excellent features is promising for sensitive surface-enhanced Raman spectroscopy (SERS) detection. Here a novel capillary monolithic 3D structural-substrate SERS platform with Au@cDNA@Ag@Cyanine 3-aptamer nanoparticles (Au@cDNA@Ag@Cy3-Apt NPs) was fabricated for rapid, highly specific profiling of ultra-trace Bisphenol A (BPA). The proposed SERS platform combined both in-capillary SERS and aptamer-affinity recognition strategies, in which the superior SERS properties of Au-Ag NPs, aptamer selectivity, and the advantages of capillary monolith were integrated. A 3D hierarchically porous network was constructed in the monolithic column, which was endowed with rich hotspots for SERS, rapid sample permeation, and better analysis efficiency than most plane-shaped SERS modes. By varying the amount of Ag precursor, the Ag-shell thickness on SERS was finely tuned to guarantee Cy3 label in proximity to the plasmonic surface. Based on the biorecognition of aptamer, the selective identification of BPA occurred and exhibited a significant change in SERS intensity without obvious interference. As a result, the monolithic SERS platform featured facile operation, excellent specificity, and rapid analysis (10 min, much less than the solution-based or planar substrate SERS modes). Ultra-high sensitivity and robust reproducibility for BPA analysis was achieved with a low limit of detection (LOD) at 9.12 × 10 ng/L. The feasibility of this SERS platform for monitoring BPA in water and milk samples was also validated. This work lights a new access to capillary monolithic SERS-sensing platform for ultrasensitive and specific analysis of BPA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.talanta.2023.125081DOI Listing

Publication Analysis

Top Keywords

sers platform
16
sers
13
monolithic structural-substrate
8
structural-substrate sers
8
platform ultrasensitive
8
capillary monolithic
8
sers modes
8
platform
6
monolithic
5
analysis
5

Similar Publications

Operando Photoelectrochemical Surface-Enhanced Raman Spectroscopy: Interfacial Mechanistic Insights and Simultaneous Detection of Patulin.

Anal Chem

January 2025

Laboratory of Modern Agricultural Equipment and Technology, Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.

Comprehending the biosensing mechanism of the biosensor interface is crucial for sensor development, yet accurately reflecting interfacial interactions within actual detection environments remains an unsolved challenge. An operando photoelectrochemical surface-enhanced Raman spectroscopy (PEC-SERS) biosensing platform was developed, capable of simultaneously capturing photocurrent and SERS signals, allowing operando characterization of the interfacial biosensing behavior. Porphyrin-based MOFs (Zr-MOF) served as bifunctional nanotags, providing a photocurrent and stable Raman signal output under 532 nm laser irradiation.

View Article and Find Full Text PDF

Collaborative integration of SERS and QCM sensing for label-free multi-component gas detection.

Talanta

January 2025

Key Disciplines Lab of Novel Micro-Nano Devices and System Technology, Key Laboratory of Optoelectronic Technology and Systems, Ministry of Education, Chongqing University, Shapingba, Chongqing, 400044, China; School of Optoelectronic Engineering, Chongqing University, Shapingba, Chongqing, 400044, China. Electronic address:

The effective qualitative and quantitative detection of mixed components of volatile organic compounds (VOCs) with similar molecular structures has always been a challenge and hotpoint in the research. A novel quartz-crystal microbalance (QCM) nanocomposite sensor integrated with a surface-enhanced Raman scattering (SERS) detection platform for multi-component gas analysis was proposed and fabricated in this paper. MIL-100 (Fe)/PAN composite fibers were developed on QCM via electrospinning of polyacrylonitrile (PAN) and hydrothermal synthesis, addressing the integration issues of MIL-100 particles in devices while maintaining high specific surface area.

View Article and Find Full Text PDF

Gold nanobowls (AuNBs) synthesized by the template-free method were deposited on graphene oxide (GO) to obtain an ultrasensitive surface enhanced Raman spectroscopy (SERS) platform for folic acid (FA) detection. GO was conditioned in aqueous solutions at various pH values to optimize the adsorption of the FA molecule and the intensity of the SERS signal. It was found that the conditioning procedure influences the orientation of FA on the SERS supports and the quality of the spectra in result.

View Article and Find Full Text PDF

Advances in Functional Nucleic Acid SERS Sensing Strategies.

ACS Sens

January 2025

Center for Biomedical-photonics and Molecular Imaging, Advanced Diagnostic-Therapy Technology and Equipment Key Laboratory of Higher Education Institutions in Shaanxi Province, School of Life Science and Technology, Xidian University, Xi'an, Shaanxi 710126, China.

Functional nucleic acids constitute a distinct category of nucleic acids that diverge from conventional nucleic acid amplification methodologies. They are capable of forming intricate hybrid structures through Hoogsteen and reverse Hoogsteen hydrogen bonding interactions between double-stranded and single-stranded DNA, thereby broadening the spectrum of DNA interactions. In recent years, functional DNA/RNA-based surface-enhanced Raman spectroscopy (SERS) has emerged as a potent platform capable of ultrasensitive and multiplexed detection of a variety of analytes of interest.

View Article and Find Full Text PDF

Nanogap-Assisted SERS/PCR Biosensor Coupled Machine Learning for the Direct Sensing of in Food.

J Agric Food Chem

January 2025

College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361021, China.

() is the primary risk factor in food safety. Herein, a nanogap-assisted surface-enhanced Raman scattering/polymerase chain reaction (SERS/PCR) biosensor coupled with a machine-learning tool was developed for the direct and specific sensing of S. aureus in milk.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!