For certain nanotechnological applications of the contractile proteins actin and myosin, ., in biosensing and network-based biocomputation, it would be desirable to temporarily switch on/off motile function in parts of nanostructured devices, ., for sorting or programming. Myosin XI motor constructs, engineered with a light-switchable domain for switching actin motility between high and low velocities (light-sensitive motors (LSMs) below), are promising in this regard. However, they were not designed for use in nanotechnology, where longevity of operation, long shelf life, and selectivity of function in specific regions of a nanofabricated network are important. Here, we tested if these criteria can be fulfilled using existing LSM constructs or if additional developments will be required. We demonstrated extended shelf life as well as longevity of the actin-propelling function compared to those in previous studies. We also evaluated several approaches for selective immobilization with a maintained actin propelling function in dedicated nanochannels only. Whereas selectivity was feasible using certain nanopatterning combinations, the reproducibility was not satisfactory. In summary, the study demonstrates the feasibility of using engineered light-controlled myosin XI motors for myosin-driven actin transport in nanotechnological applications. Before use for, ., sorting or programming, additional work is however needed to achieve reproducibility of the nanofabrication and, further, optimize the motor properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10510702 | PMC |
http://dx.doi.org/10.1021/acsnano.3c05137 | DOI Listing |
Small
December 2024
Department of Physics, Kyoto University, Kyoto, 606-8224, Japan.
The assembly of biological systems forms nonequilibrium patterns with different functionalities through molecular-level communication via stepwise sequential interaction and activation. The mimicking of this molecular signaling offers extensive opportunities to design self-assemblies of bioinspired synthetic nonequilibrium systems to develop molecular robots with active, adaptive, and autonomous behavior. Herein, the design and construction of biomolecular motor system, microtubule (MT)-kinesin based molecular swarm system, are reported through stepwise sequential interactions of DNA.
View Article and Find Full Text PDFMethods
December 2024
Unidad de Investigación y Desarrollo en Tecnología Farmacéutica (UNITEFA), CONICET and Departamento de Ciencias Farmacéuticas, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba 5000, Argentina. Electronic address:
The administration of corticosteroids is the first-line treatment of the clinical conditions with ocular inflammation. Nonetheless, ocular physiological mechanisms, anatomical barriers and corticosteroid properties prevent it from reaching the target site. Thus, frequent topical administered doses or ocular injections are required, leading to a higher risk of adverse events and poor patient compliance.
View Article and Find Full Text PDFTransl Neurosci
January 2024
Guangdong Celconta Biotechnology Co., Ltd, 9 Xincheng Road, Songshan Lake Park, Dongguan, Guangdong, PR China.
Parkinson's disease (PD) is a neurodegenerative disorder that predominantly affects dopaminergic neurons in the substantia nigra and ventral tegmental area, resulting in symptoms such as tremors, muscle rigidity, bradykinesia, and potential cognitive and affective disturbances. The effective delivery of pharmacological agents to the central nervous system is hindered by various factors, including the restrictive properties of the blood‒brain barrier and blood‒spinal cord barrier, as well as the physicochemical characteristics of the drugs. Traditional drug delivery methods may not provide the therapeutic concentrations necessary for functional restoration in PD patients.
View Article and Find Full Text PDFMicrobiol Res
November 2024
Department of Nephrology and Endocrinology, Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, China. Electronic address:
Bacterial biofilms are one of the most relevant drivers of chronic and recurrent infections and a significant healthcare problem. Biofilms were formed by cross-linking of hydrophobic extracellular polymeric substances (EPS), such as proteins, polysaccharides, and eDNA, which were synthesized by bacteria themselves after adhesion and colonization on biological surfaces. They had the characteristics of dense structure and low drug permeability, leading to tolerance and resistance of biofilms to antibiotics and to host responses.
View Article and Find Full Text PDFFront Pharmacol
November 2024
Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia.
Backgrounds: The aim of the current study was to develop a distinctive nanolipid formulation, namely, nanostructured lipid carrier (NLC), which would deliver an antibacterial medication such as mupirocin (MP). Additionally, cinnamon essential oil (CEO), which is reported to exhibit antibacterial activity, was utilized in the development process in an attempt to improve the influence of MP.
Methods: As a consequence, different MP-NLC formulations were developed using the central composite design (CCD) approach.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!