Ice core records from Greenland provide evidence for multiple abrupt cold-warm-cold events recurring at millennial time scales during the last glacial interval. Although climate variations resembling Dansgaard-Oeschger (DO) oscillations have been identified in climate archives across the globe, our understanding of the climate and ecosystem impacts of the Greenland warming events in lower latitudes remains incomplete. Here, we investigate the influence of DO-cold-to-warm transitions on the global atmospheric circulation pattern. We comprehensively analyze δO changes during DO transitions in a globally distributed dataset of speleothems and set those in context with simulations of a comprehensive high-resolution climate model featuring internal millennial-scale variations of similar magnitude. Across the globe, speleothem δO signals and model results indicate consistent large-scale changes in precipitation amount, moisture source, or seasonality of precipitation associated with the DO transitions, in agreement with northward shifts of the Hadley circulation. Furthermore, we identify a decreasing trend in the amplitude of DO transitions with increasing distances from the North Atlantic region. This provides quantitative observational evidence for previous suggestions of the North Atlantic region being the focal point for these archetypes of past abrupt climate changes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10483664 | PMC |
http://dx.doi.org/10.1073/pnas.2302283120 | DOI Listing |
Environ Sci Pollut Res Int
January 2025
Institute of Industrial Science (IIS), The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa City, 277-8575, Chiba, Japan.
During the Fukushima Daiichi Nuclear Power Plant (FDNPP) accident on March 11, 2011, radionuclides such as tritium were released into the environment across Japan, obscuring the natural background signal of tritium in precipitation. This anthropogenic component was rapidly washed out by precipitation according to measurements in Japan. However, the impact of the accident on the natural tritium-based estimation of water system transit times in Fukushima and other prefectures in Japan remains uncertain.
View Article and Find Full Text PDFUndersea Hyperb Med
January 2025
Department of Diving and Hyperbaric Medicine, Naval Medical Center, Naval Medical University, Shanghai, P.R. China.
Decompression after diving may inevitably cause the production of bubbles in the body, even without protocol violation. Bubbles produced in the circulation may damage the vascular cells, leading to vascular dysfunction. In this study, five subjects were recruited and subjected to hyperbaric exposure (15 meters; 100 minutes).
View Article and Find Full Text PDFReprod Health
January 2025
Department of Public Health Nutrition, College of Medicine and Health Sciences, Wollo University, Dessie, Ethiopia.
Background: Exposure to sunlight aids in the body's production of vitamin D, guards against rickets, and treats newborn jaundice. In Ethiopia, the magnitude of sunlight exposure practice varies across studies. Thus, this study aimed to estimate the pooled practices and factors associated with sunlight exposure of infants among mothers in Ethiopia.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Botany, Smithsonian Institution, National Museum of Natural History, Washington, DC, 20013, USA.
The Gulf of Maine holds significant ecological and economic value for fisheries and communities in north-eastern North America. However, there is apprehension regarding its vulnerability to the effects of increasing atmospheric CO. Substantial recent warming and the inflow of low alkalinity waters into the Gulf of Maine have raised concerns about the impact of ocean acidification on resident marine calcifiers (e.
View Article and Find Full Text PDFNat Commun
January 2025
Woods Hole Oceanographic Institution, Woods Hole, MA, USA.
The Atlantic Meridional Overturning Circulation (AMOC) is crucial for global ocean carbon and heat uptake, and controls the climate around the North Atlantic. Despite its importance, quantifying the AMOC's past changes and assessing its vulnerability to climate change remains highly uncertain. Understanding past AMOC changes has relied on proxies, most notably sea surface temperature anomalies over the subpolar North Atlantic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!