A Novel Cell Volume Sensor for Real-Time Analysis of Ca-Activated K Channel.

ACS Biomater Sci Eng

Department of Chemistry, College of Chemistry and Materials Science, Jinan University, Guangzhou 510632, People's Republic of China.

Published: September 2023

AI Article Synopsis

  • Potassium channels are essential for regulating cell volume, and a new sensor was developed to study their function during regulatory volume decrease (RVD).
  • The sensor effectively monitored K channel activity noninvasively, showing that calcium activation increases RVD levels.
  • Differences in RVD levels between normal and cancerous nasopharyngeal cells reveal that K channels play a significant role in RVD and can help identify various K channel activations.

Article Abstract

Potassium channels play a vital role in cell volume regulation. A cell volume sensor was constructed by integrating regulatory volume decrease (RVD) with quartz-crystal microbalance (QCM) for studying potassium channels and their expression. The sensor successfully monitored the K channel's activities during RVD by sensitive and noninvasive means. It showed that Ca activated the K channel (K) and enhanced the RVD level. The inhibition of blockers on K channels exhibited an obvious difference in RVD level between normal and cancerous nasopharyngeal cells, suggesting that the K channel contributes a dominant role to the RVD function and provides an approach to identify the activation of various K channels.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsbiomaterials.3c00771DOI Listing

Publication Analysis

Top Keywords

cell volume
12
volume sensor
8
potassium channels
8
rvd level
8
rvd
5
novel cell
4
volume
4
sensor real-time
4
real-time analysis
4
analysis ca-activated
4

Similar Publications

Background Aims: Patients with hepatocellular carcinoma (HCC) meeting UNOS-downstaging (DS) criteria have excellent post-liver transplantation (LT) outcomes. Studies on HCC beyond UNOS-DS criteria ("All-comers" (AC)) have been limited by small sample size and short follow-up time, prompting this analysis.

Approach Results: 326 patients meeting UNOS-DS and 190 meeting AC criteria from 9 LT centers across 5 UNOS regions were enrolled from 2015 to 2023 and prospectively followed.

View Article and Find Full Text PDF

l-Asparaginase (l-ASNase) catalyzes the hydrolysis of l-asparagine, leading to its depletion and subsequent effects on the cellular proliferation and survival. In contrast to normal cells, malignant cells that lack asparagine synthase are extremely susceptible to asparagine deficiency. l-ASNase has been successfully employed in treating pediatric leukemias and non-Hodgkin lymphomas; however, its usage in adult patients and other types of cancer is limited due to significant side effects and drug resistance.

View Article and Find Full Text PDF

Design and Synthesis of Topoisomerases-Histone Deacetylase Dual Targeted Quinoline-Bridged Hydroxamates as Anticancer Agents.

J Med Chem

January 2025

Laboratory for Drug Design and Synthesis, Department of Pharmaceutical Sciences and Natural Products, School of Pharmaceutical Sciences, Central University of Punjab, Bathinda 151 401, India.

The multifactorial nature of cancer requires treatment that involves simultaneous targeting of associated overexpressed proteins and cell signaling pathways, possibly leading to synergistic effects. Herein, we present a systematic study that involves the simultaneous inhibition of human topoisomerases (hTopos) and histone deacetylases (HDACs) by multitargeted quinoline-bridged hydroxamic acid derivatives. These compounds were rationally designed considering pharmacophoric features and catalytic sites of the cross-talk proteins, synthesized, and assessed for their anticancer potential.

View Article and Find Full Text PDF

Anti-programmed cell death 1 (PD-1) monoclonal antibodies (mAbs) have proven to be effective in treating various cancers, including colorectal, lung, and melanoma. Despite their clinical success, some patients develop resistance to mAbs, requiring co-treatments with radio- or chemotherapy. Interleukin-15 (IL-15) is an immunostimulatory cytokine that promotes immune cell production and proliferation.

View Article and Find Full Text PDF

Directed Evolution of Multicyclic Peptides Using Yeast Display for Sensitive and Selective Fluorescent Analysis of CD28 on the Cell Surface.

Anal Chem

January 2025

The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.

CD28 is a costimulatory receptor that provides the second signal necessary for T-cell activation and is associated with diseases, including rheumatoid arthritis, asthma, and cancer. Targeting CD28 is crucial for both functional bioanalysis and therapeutic development. Molecular probes, particularly fluorescent probes, can enhance our understanding of CD28's cellular roles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!