Parkinson's disease (PD) causes impairments in cortical structures leading to motor and cognitive symptoms. While common disease management and treatment strategies mainly depend on the subjective assessment of clinical scales and patients' diaries, research in recent years has focused on advances in automatic and objective tools to help with diagnosing PD and determining its severity. Due to the link between brain structure deficits and physical symptoms in PD, objective brain activity and body motion assessment of patients have been studied in the literature. This study aimed to explore the relationship between brain activity and body motion measures of people with PD to look at the feasibility of diagnosis or assessment of PD using these measures. In this study, we summarised the findings of 24 selected papers from the complete literature review using the Scopus database. Selected studies used both brain activity recording using functional near-infrared spectroscopy (fNIRS) and motion assessment using sensors for people with PD in their experiments. Results include 1) the most common study protocol is a combination of single tasks. 2) Prefrontal cortex is mostly studied region of interest in the literature. 3) Oxygenated haemoglobin (HbO ) concentration is the predominant metric utilised in fNIRS, compared to deoxygenated haemoglobin (HHb). 4) Motion assessment in people with PD is mostly done with inertial measurement units (IMUs) and electronic walkway. 5) The relationship between brain activity and body motion measures is an important factor that has been neglected in the literature.

Download full-text PDF

Source
http://dx.doi.org/10.1109/JBHI.2023.3308901DOI Listing

Publication Analysis

Top Keywords

brain activity
16
activity body
12
body motion
12
motion assessment
12
parkinson's disease
8
relationship brain
8
motion measures
8
assessment
6
brain
5
motion
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!