A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Neuroinflammation and the immune system in hypoxic ischaemic brain injury pathophysiology after cardiac arrest. | LitMetric

Hypoxic ischaemic brain injury after resuscitation from cardiac arrest is associated with dismal clinical outcomes. To date, most clinical interventions have been geared towards the restoration of cerebral oxygen delivery after resuscitation; however, outcomes in clinical trials are disappointing. Therefore, alternative disease mechanism(s) are likely to be at play, of which the response of the innate immune system to sterile injured tissue in vivo after reperfusion has garnered significant interest. The innate immune system is composed of three pillars: (i) cytokines and signalling molecules; (ii) leucocyte migration and activation; and (iii) the complement cascade. In animal models of hypoxic ischaemic brain injury, pro-inflammatory cytokines are central to propagation of the response of the innate immune system to cerebral ischaemia-reperfusion. In particular, interleukin-1 beta and downstream signalling can result in direct neural injury that culminates in cell death, termed pyroptosis. Leucocyte chemotaxis and activation are central to the in vivo response to cerebral ischaemia-reperfusion. Both parenchymal microglial activation and possible infiltration of peripherally circulating monocytes might account for exacerbation of an immunopathological response in humans. Finally, activation of the complement cascade intersects with multiple aspects of the innate immune response by facilitating leucocyte activation, further cytokine release and endothelial activation. To date, large studies of immunomodulatory therapies have not been conducted; however, lessons learned from historical studies using therapeutic hypothermia in humans suggest that quelling an immunopathological response might be efficacious. Future work should delineate the precise pathways involved in vivo in humans to target specific signalling molecules.

Download full-text PDF

Source
http://dx.doi.org/10.1113/JP284588DOI Listing

Publication Analysis

Top Keywords

immune system
16
innate immune
16
hypoxic ischaemic
12
ischaemic brain
12
brain injury
12
cardiac arrest
8
outcomes clinical
8
response innate
8
signalling molecules
8
complement cascade
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!