Context: The bandgap of metal monochalcogenides (MMCs) is a key property that governs their physical and chemical properties. Accurate measurement of the bandgap is essential for a range of applications, including optoelectronics and photovoltaics. However, many theoretical approximations fail to accurately calculate the bandgap for MMCs, making it difficult to obtain precise values. This study investigated the suitability of the FP-LAPW/GAM-MPW1K scheme for determining the bandgap of MMCs. The investigation included lattice parameters, bandgap, band structure, and density of states, which were compared against both previous theoretical calculations and available experimental data. The findings of the study indicate that the FP-LAPW/GAM-MPW1K approach accurately calculates the bandgap value of MMCs by efficiently treating d-state electrons. The results are consistent with prior studies, confirming the method's reliability in determining the bandgap of these semiconductors.

Methods: our study used the GAM-MPW1K functional and the full potential linearized augmented plane wave method (FP-LAPW) in the ELK code to calculate the lattice parameters, electronic band structure, and bandgap of ZnS, ZnSe, ZnTe, CdS, CdSe, and CdTe compounds in the wurtzite structure. The crystallographic data were obtained from the COD database and the inputs were prepared by CIF2CELL code. The results were visualized using Xmgrace and VESTA software.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s00894-023-05696-0DOI Listing

Publication Analysis

Top Keywords

bandgap mmcs
12
fp-lapw/gam-mpw1k approach
8
bandgap
8
determining bandgap
8
lattice parameters
8
band structure
8
approach reliable
4
reliable abinitio
4
abinitio method
4
method calculating
4

Similar Publications

Context: The bandgap of metal monochalcogenides (MMCs) is a key property that governs their physical and chemical properties. Accurate measurement of the bandgap is essential for a range of applications, including optoelectronics and photovoltaics. However, many theoretical approximations fail to accurately calculate the bandgap for MMCs, making it difficult to obtain precise values.

View Article and Find Full Text PDF

Recent advances in atomically thin two dimensional (2D) anisotropic group IV -VI metal monochalcogenides (MMCs) and their fascinating intrinsic properties and potential applications are hampered due to an ongoing challenge of monolayer isolation. Among the most promising MMCs, tin (II) sulfide (SnS) is an earth-abundant layered material with tunable bandgap and anisotropic physical properties, which render it extraordinary for electronics and optoelectronics. To date, however, the successful isolation of atomically thin SnS single layers at large quantities has been challenging due to the presence of strong interlayer interactions, attributed to the lone-pair electrons of sulfur.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!