Macrophages represent a broad spectrum of distinct, but closely related tissue-resident immune cells. This presents a major challenge for the study of functional aspects of these cells using classical Cre recombinase-mediated conditional mutagenesis in mice, since single promoter-driven Cre transgenic models often display limited specificity toward their intended target. The advent of CRISPR/Cas9 technology has now provided a time- and cost-effective method to explore the full potential of binary transgenic, intersectional genetics. Specifically, the use of two promoters driving inactive Cre fragments that, when co-expressed, dimerize and only then gain recombinase activity allows the characterization and manipulation of genetically defined tissue macrophage subpopulations. Here, we will elaborate on the use of this protocol to capitalize on these recent technological advances in mouse genetics and discuss their strengths and pitfalls to improve the study of tissue macrophage subpopulations in physiology and pathophysiology.

Download full-text PDF

Source
http://dx.doi.org/10.1007/978-1-0716-3437-0_32DOI Listing

Publication Analysis

Top Keywords

tissue macrophage
12
macrophage subpopulations
8
tackling tissue
4
macrophage heterogeneity
4
heterogeneity splitcre
4
splitcre transgenesis
4
transgenesis macrophages
4
macrophages represent
4
represent broad
4
broad spectrum
4

Similar Publications

Polyphenolic Hispolon Derived from Medicinal Mushrooms of the and Genera Promotes Wound Healing in Hyperglycemia-Induced Impairments.

Nutrients

January 2025

Department of Pharmacy and Master Program, Collage of Pharmacy and Health Care, Tajen University, Yanpu Township 90741, Taiwan.

: This study investigated the wound-healing potential of hispolon, a polyphenolic pigment derived from medicinal mushrooms, under diabetic conditions using both in vitro and in vivo models. : In the in vitro assays, L929 fibroblast cells exposed to high glucose (33 mmol/L) were treated with hispolon at concentrations of 2.5, 5, 7.

View Article and Find Full Text PDF

Tuberculosis (TB) remains the major cause of mortality and morbidity, causing approximately 1.3 million deaths annually. As a highly successful pathogen, () has evolved numerous strategies to evade host immune responses, making it essential to understand the interactions between and host cells.

View Article and Find Full Text PDF

Objective: Polycystic ovary syndrome (PCOS) is a prevalent metabolic disorder with an increased risk for cardiovascular disease (CVD) that is enhanced by obesity. This study sought to determine whether a panel of cardiovascular risk proteins (CVRPs) would be dysregulated in overweight/obese PCOS patients, highlighting potential biomarkers for CVD in PCOS.

Methods: In this exploratory cross-sectional study, plasma levels of 54 CVRPs were analyzed in women with PCOS (n = 147) and controls (n = 97).

View Article and Find Full Text PDF

: Peroxisome proliferator-activated receptor gamma (PPARγ) is a fatty acid-binding transcription activator of the adipokine chemerin. The key role of PPARγ in adipogenesis was established by reports on adipose tissue-resident macrophages that express PPARγ. The present study examined PPARγ macrophages in human skeletal muscle tissues, their response to fatty acid (FA) species, and their correlations with age, obesity, adipokine expression, and an abundance of other macrophage phenotypes.

View Article and Find Full Text PDF

Background: Sepsis is a severe condition causing organ failure due to an abnormal immune reaction to infection, characterized by ongoing excessive inflammation and immune system issues. Osteopontin (OPN) is secreted by various cells and plays a crucial role in inflammatory responses and immune regulation. Nonetheless, the precise function of OPN in sepsis remains to be elucidated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!