Phase transformation of ferrihydrite to more stable Fe (oxyhydr)oxides, catalyzed by iron(II) [Fe(II)], significantly influences the mobility of heavy metals [e.g., chromium (Cr)] associated with ferrihydrite. However, the impact of organic matter (OM) on the behavior of Cr(III) in the Fe(II)-catalyzed transformation of ferrihydrite and the underlying mechanisms are unclear. Here, the Fe(II)-catalyzed transformation of the coprecipitates of Fe(III), Cr(III), or rice straw-derived OM was studied at the nanoscale and molecular levels using Fe and Cr K-edge X-ray absorption spectroscopy and spherical aberration corrected scanning transmission electron microscopy (Cs-STEM). Batch extraction results suggested that the OM counteracted the enhancement of Cr(III) extractability during the Fe(II)-catalyzed transformation. Cs-STEM and XAS analysis suggested that Cr(III) could be incorporated into the goethite formed by Fe(II)-catalyzed ferrihydrite transformation, which, however, was inhibited by the OM. Furthermore, Cs-STEM analysis also provided direct nanoscale level evidence that residual ferrihydrite could re-immobilize the released Cr(III) during the Fe(II)-catalyzed transformation process. These results highlighted that the decreased extractability of Cr(III) mainly resulted from the inhibition of OM on the Fe(II)-catalyzed transformation of ferrihydrite to secondary Fe (oxyhydr)oxides, which facilitates insightful understanding and prediction of the geochemical cycling of Cr in soils with active redox dynamics.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.est.3c03848DOI Listing

Publication Analysis

Top Keywords

feii-catalyzed transformation
20
transformation ferrihydrite
12
organic matter
8
enhancement criii
8
criii extractability
8
extractability feii-catalyzed
8
feii-catalyzed ferrihydrite
8
transformation
8
ferrihydrite transformation
8
criii feii-catalyzed
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!