Free Salt Dyeing by Treatment of Cotton Fabric Using Carboxyethyl Chitosan and Synthesized Direct Dyes to Enhance Dyeing Properties and Antibacterial Activity.

Curr Org Synth

Pretreatment and Finishing of Cellulosic Fibers Department, Textile Research and Technology Institute, National Research Centre, 33 El-Behouth St., Dokki, Cairo, P.O.12622, Egypt.

Published: August 2023

Aim: The purpose of this paper is to synthesize and characterize two new direct dyes based on chromenes derivatives.

Background: The synthesis of carboxyethyl chitosan (CECS) by the reaction of chitosan and acrylic acid via Michael's addition reaction was conducted. Cotton fabrics were treated with CECS to enhance the exhaustion of dye, fastness properties, and antimicrobial activity of dyed fabric.

Methods: Chitosan (CS) and acrylic acid were combined in Michael's addition process to successfully produce N-carboxyethylchitosan (CECS). Then, the cotton was treated with different concentrations of carboxyethyl chitosan (0.5-5 wt.%) and then dyed by synthesized mono azo and diazo direct dyes based on chromene derivatives.

Results And Discussion: The results regarding dyeing and antibacterial activity indicated highquality dyeing properties, However, direct dyes showed higher exhaustion and fixation values, fastness properties, and the colorimetric CIE L*a*b* C*h° data of the dyed cotton fabric.

Conclusion: Cotton fabrics treated with carboxyethyl chitosan and dyed with direct dyes were found to have higher antibacterial activity upon a concentration of 2.5 wt.%. In addition, the antibacterial activity towards Gram-positive bacteria was reported to be more than Gram-negative bacteria.

Download full-text PDF

Source
http://dx.doi.org/10.2174/1570179420666230518142502DOI Listing

Publication Analysis

Top Keywords

direct dyes
20
carboxyethyl chitosan
16
antibacterial activity
16
dyeing properties
8
dyes based
8
chitosan acrylic
8
acrylic acid
8
michael's addition
8
cotton fabrics
8
fabrics treated
8

Similar Publications

Nanocrystalline TiO is a perspective semiconductor gas-sensing material due to its long-term stability of performance, but it is limited in application because of high electrical resistance. In this paper, a gas-sensing nanocomposite material with p-p heterojunction is introduced based on p-conducting Cr-doped TiO in combination with p-conducting CrO. Materials were synthesized via a single-step flame spray pyrolysis (FSP) technique and comprehensively studied by X-ray diffraction (XRD), Brunauer-Emmett-Teller (BET) specific surface area analysis, transition electron microscopy (TEM), energy dispersive X-ray (EDX) spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), and Raman spectroscopy.

View Article and Find Full Text PDF

Synergistic hydrogen production and organic pollutant removal via dual-functional photocatalytic systems.

J Environ Sci (China)

July 2025

Shandong Key Laboratory of Environmental Processes and Health, Qingdao Key Laboratory of Marine Pollutant Prevention, School of Environmental Science and Engineering, Shandong University, Qingdao 266237, China. Electronic address:

Photocatalytic water splitting is a promising way to produce H, a green and clean energy source. However, efficient H production typically relies on the addition of electron donors, such as alcohols and acids, which are neither environmentally friendly nor cost-effective. Recently, we have witnessed a surge of studies in coupling photocatalytic H evolution with organic pollutant oxidation, which significantly promotes charge separation and improves the overall photocatalytic efficiency.

View Article and Find Full Text PDF

Development and maintenance of the nervous system are governed by a scheduled cell death mechanism known as apoptosis. Very much how neurons survive and function depends on the degree of death in differentiating pseudo-neuronal cells produced from neural stem cells. Different inducers can affect the degree of death in these cells: hormones, medicines, growth factors, and others.

View Article and Find Full Text PDF

Identifying facile strategies for hierarchically structuring crystalline porous materials is critical for realizing diffusion length scales suitable for broad applications. Here, we elucidate synthesis-structure-function relations governing how room temperature catalytic conditions can be exploited to tune covalent organic framework (COF) growth and thereby access unique hierarchical morphologies without the need to introduce secondary templates or structure directing molecules. Specifically, we demonstrate how scandium triflate, an efficient catalyst involved in the synthesis of imine-based COFs, can be exploited as an effective growth modifier capable of selectively titrating terminal amines on 2D COF layers to facilitate anisotropic crystal growth.

View Article and Find Full Text PDF

Exosomes, which are known to transport diverse proteins from parent cells to recipient cells, consequently influence the biological activities of the recipient cells. Among those proteins, the epithelial cell adhesion molecule (EpCAM), plays a crucial role as it is implicated in cell adhesion and signaling processes. As exosomal EpCAM potentially affects the migration of recipient cells, direct visualization with high spatial resolution is essential to better understand this impact and the role of exosomal EpCAM in recipient cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!