Conducting target ions rapidly while rejecting rival ions efficiently is challenging yet highly demanded for ion separation related applications. Two-dimensional (2D) channels are widely used for ion separation, but highly selective 2D channels generally suffer from a relatively low ionic conductivity. Here we report that the 2D vermiculite channels have a Na conductivity higher than bulk and at the same time reject heavy metal ions with a selectivity of a few hundreds. Such performance is attributed to the highly electronegative crystal surface and the extremely narrow channel (0.2 nm high), as also supported by the molecular dynamics simulation. We demonstrate that the highly selective and conductive sodium channels can be utilized to harvest osmotic power from industrial wastewater, achieving a power density of more than 20 W m while preventing pollution from waste heavy metal ions. This work provides a strategy for wastewater utilization as well as treatment. Moreover, the investigation suggests the possibility to break the ionic permeability-selectivity trade-off by combining Ångstrom-scale confinement with proper surface engineering, which could lead to applications that are challenging for previous materials.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsnano.3c05149DOI Listing

Publication Analysis

Top Keywords

sodium channels
8
osmotic power
8
ion separation
8
highly selective
8
heavy metal
8
metal ions
8
channels
5
two-dimensional sodium
4
channels high
4
high selectivity
4

Similar Publications

Several mutations of the uppermost arginine, R219, in the voltage-sensing sliding helix S4 of cardiac sodium channel Nav1.5 are reported in the ClinVar databases, but the clinical significance of the respective variants is unknown (VUSs). AlphaFold 3 models predicted a significant downshift of S4 in the R219C VUS.

View Article and Find Full Text PDF

Reactive astrogliosis and acidosis, common features of epileptogenic lesions, express a high level of astrocytic acid-sensing ion channel-1a (ASIC1a), a proton-gated cation channel and key mediator of responses to neuronal injury. This study investigates the role of astrocytic ASIC1a in cognitive impairment following epilepsy. Status epilepticus (SE) in C57/BL6 mice was induced using lithium-pilocarpine; the impact of ASIC1a on astrocytes was assessed using rAAV-ASIC1a-NC and rAAV-ASIC1a-shRNA, injected in the CA3 region of mice.

View Article and Find Full Text PDF

Sigma-1 Receptor Modulates CFA-Induced Inflammatory Pain via Sodium Channels in Small DRG Neurons.

Biomolecules

January 2025

Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd., Wuhan 430030, China.

The sigma-1 receptor (Sig-1R) has emerged as a significant target in the realm of pain management and has been the subject of extensive research. Nonetheless, its specific function in inflammatory pain within dorsal root ganglion (DRG) neurons remains inadequately elucidated. This study utilized whole-cell patch clamp techniques, single-cell real-time PCR, and immunohistochemistry to examine the influence of Sig-1R on inflammatory pain induced by complete Freund's adjuvant (CFA) in a rat model.

View Article and Find Full Text PDF

Lysosomes finely control macrophage inflammatory function via regulating the release of lysosomal Fe through TRPML1 channel.

Nat Commun

January 2025

Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, Jiangsu, China.

Lysosomes are best known for their roles in inflammatory responses by engaging in autophagy to remove inflammasomes. Here, we describe an unrecognized role for the lysosome, showing that it finely controls macrophage inflammatory function by manipulating the lysosomal Fe-prolyl hydroxylase domain enzymes (PHDs)-NF-κB-interleukin 1 beta (IL1B) transcription pathway that directly links lysosomes with inflammatory responses. TRPML1, a lysosomal cationic channel, is activated secondarily to ROS elevation upon inflammatory stimuli, which in turn suppresses IL1B transcription, thus limiting the excessive production of IL-1β in macrophages.

View Article and Find Full Text PDF

Electrochemo-Mechanics insights of Sn foil anode in Sodium-Ion batteries.

J Colloid Interface Sci

January 2025

School of Material Science and Engineering, "The Belt and Road Initiative" Advanced Materials International Joint Research Center of Hebei Province, Hebei University of Technology, Tianjin 300130 China. Electronic address:

The development of high-performance sodium-ion batteries (SIBs) is crucial to meeting the growing demand for low-cost, sustainable energy storage alternatives to lithium-ion batteries (LIBs). However, achieving stable cycling performance in SIBs is challenging, particularly with tin (Sn) foil anodes, which suffer from issues like sodium trapping and structural degradation due to significant volume changes during sodiation and desodiation. In this study, we investigate the electrochemo-mechanical behavior of Sn foil anodes, focusing on the mechanisms of sodium trapping and structural evolution that impair battery performance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!