Drug resistance remains the greatest challenge in improving outcomes for cancer patients who receive chemotherapy and targeted therapy. Surmounting evidence suggests that a subpopulation of cancer cells could escape intense selective drug treatment by entering a drug-tolerant state without genetic variations. These drug-tolerant cells (DTCs) are characterized with a slow proliferation rate and a reversible phenotype. They reside in the tumor region and may serve as a reservoir for resistant phenotypes. The survival of DTCs is regulated by epigenetic modifications, transcriptional regulation, mRNA translation remodeling, metabolic changes, antiapoptosis, interactions with the tumor microenvironment, and activation of signaling pathways. Thus, targeting the regulators of DTCs opens a new avenue for the treatment of therapy-resistant tumors. In this review, we first provide an overview of common characteristics of DTCs and the regulating networks in DTCs development. We also discuss the potential therapeutic opportunities to target DTCs. Last, we discuss the current challenges and prospects of the DTC-targeting approach to overcome acquired drug resistance. Reviewing the latest developments in DTC research could be essential in discovering of methods to eliminate DTCs, which may represent a novel therapeutic strategy for preventing drug resistance in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449058PMC
http://dx.doi.org/10.1002/mco2.342DOI Listing

Publication Analysis

Top Keywords

drug resistance
16
drug-tolerant cells
8
acquired drug
8
cancer cells
8
dtcs
7
drug
5
targeting drug-tolerant
4
cells
4
cells promising
4
promising strategy
4

Similar Publications

Background: Healthcare-associated infections (HAI) caused by multidrug-resistant organisms have emerged as a significant global issue, posing substantial challenges to healthcare systems. Low- and intermediate-level disinfectants are extensively utilized for cleaning and disinfecting surfaces in hospitals to mitigate environmental transmission of HAI. Therefore, the need for more effective and environmentally safe disinfectants is increasing.

View Article and Find Full Text PDF

Exosomal circ_0006896 promotes AML progression via interaction with HDAC1 and restriction of antitumor immunity.

Mol Cancer

January 2025

Department of Hematology, Qilu Hospital of Shandong University, No.117, West of Wenhua Road, Jinan, Shandong, 250012, People's Republic of China.

Background: Drug resistance and immune escape continue to contribute to poor prognosis in AML. Increasing evidence suggests that exosomes play a crucial role in AML immune microenvironment.

Methods: Sanger sequencing, RNase R and fluorescence in situ hybridization were performed to confirm the existence of circ_0006896.

View Article and Find Full Text PDF

Genomic characteristics and phylogenetic relationships of Cutibacterium acnes breast milk isolates.

BMC Microbiol

January 2025

Key Laboratory of Dairy Biotechnology and Engineering (IMAU), Ministry of Education, Inner Mongolia Agricultural University, Hohhot, P.R. China.

Background: Cutibacterium acnes is one of the most commonly found microbes in breast milk. However, little is known about the genomic characteristics of C. acnes isolated from breast milk.

View Article and Find Full Text PDF

The I38T substitution in the influenza virus polymerase-acidic (PA) subunit is a resistance marker of concern for treatment with the antiviral baloxavir marboxil (BXM). Thus, monitoring PA/I38T mutations is of clinical importance. Here, we developed three rapid and sensitive assays for the detection and monitoring of the PA/I38T mutation.

View Article and Find Full Text PDF

Mechanisms of Staphylococcus aureus Antibiotics Resistance Revealed by Adaptive Laboratory Evolution.

Curr Microbiol

January 2025

Shanghai Key Laboratory of Veterinary Biotechnology, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China.

Infection caused by drug-resistant Staphylococcus aureus is a serious public health and veterinary concern. Lack of a comprehensive understanding of the mechanisms underlying the emergence of drug-resistant strains, it makes S. aureus one of the most intractable pathogenic bacteria.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!