In the global context of climate change and carbon neutrality, this work proposes a strategy to improve the light absorption of photocatalytic water-splitting materials into the visible spectrum by anion doping. In this framework, reactive high power impulse magnetron sputtering (HiPIMS) of a pure Zr target in Ar/N/O gas mixture was used for the deposition of crystalline zirconium oxynitride (ZrON) thin films with variable nitrogen doping concentration and energy band-gap. The nitrogen content into these films was controlled by the discharge pulsing frequency, which controls the target surface poisoning and peak discharge current. The role of the nitrogen doping on the optical, structural, and photocatalytic properties of ZrON films was investigated. UV-Vis-NIR spectroscopy was employed to investigate the optical properties and to assess the energy band-gap. Surface chemical analysis was performed using X-ray photoelectron spectroscopy, while structural analysis was carried out by X-ray diffraction. The increase in the pulse repetition frequency determined a build-up in the nitrogen content of the deposited ZrON thin films from ∼10 to ∼25 at.%. This leads to a narrowing of the optical band-gap energy from 3.43 to 2.20 eV and endorses efficient absorption of visible light. Owing to its narrow bandgap, ZrON thin films obtained by reactive HiPIMS can be used as visible light-driven photocatalyst. For the selected processing conditions (pulsing configuration and gas composition), it was found that reactive HiPIMS can suppress the hysteresis effect for a wide range of frequencies, leading to a stable deposition process with a smooth transition from compound to metal-sputtering mode.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448390PMC
http://dx.doi.org/10.3389/fchem.2023.1239964DOI Listing

Publication Analysis

Top Keywords

nitrogen doping
12
reactive hipims
12
zron thin
12
thin films
12
energy band-gap
8
nitrogen content
8
nitrogen
5
films
5
band-gap
4
band-gap engineering
4

Similar Publications

Design of a Co doped carbon Backbone with self-grown Au nanoparticles via a 'Triple Advantage' Strategy for sensitive dopamine detection.

J Colloid Interface Sci

January 2025

State Key Laboratory of New Pharmaceutical Preparations and Excipients, Key Laboratory of Medicinal Chemistry and Molecular Diagnosis of the Ministry of Education, Key Laboratory of Analytical Science and Technology of Hebei Province, College of Chemistry and Materials Science, Hebei University 071002 Baoding, PR China. Electronic address:

In this study, a Co doped polyhedral carbon skeleton (Co CN) was prepared by nitrogen carbonization using ZIF-67 as a precursor. The Co CN features a rough surface with excellent electrical conductivity, and the Co atoms exhibit unique catalytic properties. Based on these characteristics, we used Co CN as a carrier to load Au nanoparticles (NPs) onto its surface through the linkage and reduction effects of polyoxometalates (POMs).

View Article and Find Full Text PDF

Constructing a built-in electric field (BIEF) within heterostructures has emerged as a compelling strategy for advancing electrocatalytic oxygen evolution reaction (OER) performance. Herein, the p-n type nanosheet array heterojunction NiP-NCDs-Co(OH)-NF are successfully prepared. The variation in interaction affinity between nitrogen within N-doped carbon dots (NCDs) and Ni/Co induces charge redistribution between Co and Ni in the NiP-NCDs-Co(OH)-NF-3 heterostructure, thereby enhancing the intensity of the BIEF, facilitating electron transfer, and markedly improving OER activity.

View Article and Find Full Text PDF

Combination of Broad Light-Absorption CuS with S,C,N-TiO: Assessment of Photocatalytic Performance in Nitrogen Fixation Reaction.

Inorg Chem

January 2025

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran.

In the field of solar energy storage, photocatalytic ammonia production is a next-generation technology. The rapid recombination of charges and insignificant utilization of the sunlight spectrum are bottlenecks of effective photocatalytic N fixation. The introduction of impurities in the crystal lattice and the development of heterojunctions could effectively segregate carriers and improve the solar-light-harvesting capability, which can boost NH generation.

View Article and Find Full Text PDF

Nitrogen doping turns carbonaceous materials into fast-reacting catalysts for reductive dechlorination.

Environ Pollut

January 2025

Department of Plant and Environmental Sciences, Faculty of Life Sciences, University of Copenhagen, Thorvaldsensvej 40, DK-1871 Frederiksberg C, Denmark. Electronic address:

Nitrogen (N) doping of biomass prior pyrolysis has been identified as an effective approach for enhancing biochar catalytic reactivity. However, high-temperature pyrolysis of N-rich biomass may produce N-devoid biochars with high reactivity, calling for attention to the true causes of the reactivity increases and the role of nitrogen. In this study, N-doped wheat straw biochar (N-BC) materials were produced using urea as N dopant and different pyrolysis conditions, and their catalytic reactivity assessed for the reduction of trichloroethylene (TCE) by green rust (GR), a layered Fe(II)Fe(III) hydroxide.

View Article and Find Full Text PDF

Enhancing catalytic activity in MoC nanodots via nitrogen doping and graphene integration for efficient hydrogen evolution under alkaline conditions.

J Colloid Interface Sci

January 2025

State Key Laboratory of Coordination Chemistry, MOE Key Laboratory of Mesoscopic Chemistry, MOE Key Laboratory of High Performance Polymer Materials and Technology, MOE Engineering Research Center of Photoresist Materials, Jiangsu Key Laboratory of Advanced Organic Materials, Tianchang New Materials and Energy Technology Research Center, Institute of Green Chemistry and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China. Electronic address:

Due to its exceptional electronic properties and catalytic activity, MoC has garnered significant attention for its application in electrocatalysis, particularly for the hydrogen evolution reaction (HER). However, several critical challenges continue to impede its widespread use, especially under strongly alkaline conditions. A primary obstacle is the enhancement of its intrinsic activity through further modification strategies, which remains a key limitation for its broader utilization.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!