Introduction: Amplification of human chromosome 3q26-29, which encodes oncoprotein ΔNp63 among other isoforms of the p63 family, is a feature common to squamous cell carcinomas (SCCs) of multiple tissue origins. Along with overexpression of ΔNp63, activation of the protooncogene, , whether by overexpression or oncogenic mutation, is frequently observed in many cancers. In this study, analysis of transcriptome data from The Cancer Genome Atlas (TCGA) demonstrated that expression of , particularly isoforms, and are significantly elevated in advanced squamous cell carcinomas of the head and neck (HNSCCs), suggesting pathological significance. However, how co-overexpressed ΔNp63 and HRAS affect the immunosuppressive tumor microenvironment (TME) is incompletely understood.

Methods: Here, we established and characterized an immune competent mouse model using primary keratinocytes with retroviral-mediated overexpression of ΔNp63α and constitutively activated HRAS (v-ras G12R) to evaluate the role of these oncogenes in the immune TME.

Results: In this model, orthotopic grafting of wildtype syngeneic keratinocytes expressing both v-ras and elevated levels of ΔNp63α consistently yield carcinomas in syngeneic hosts, while cells expressing v-ras alone yield predominantly papillomas. We found that polymorphonuclear (PMN) myeloid cells, experimentally validated to be immunosuppressive and thus representing myeloid-derived suppressor cells (PMN-MDSCs), were significantly recruited into the TME of carcinomas arising early following orthotopic grafting of ΔNp63α/v-ras-expressing keratinocytes. ΔNp63α/v-ras-driven carcinomas expressed higher levels of chemokines implicated in recruitment of MDSCs compared to v-ras-initiated tumors, providing a heretofore undescribed link between ΔNp63α/HRAS-driven carcinomas and the development of an immunosuppressive TME.

Conclusion: These results support the utilization of a genetic carcinogenesis model harboring specific genomic drivers of malignancy to study mechanisms underlying the development of local immunosuppression.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449460PMC
http://dx.doi.org/10.3389/fimmu.2023.1200970DOI Listing

Publication Analysis

Top Keywords

myeloid-derived suppressor
8
suppressor cells
8
mouse model
8
squamous cell
8
cell carcinomas
8
orthotopic grafting
8
expressing v-ras
8
carcinomas
6
oncogenic ras
4
ras Δnp63α
4

Similar Publications

Intestinal Akkermansia muciniphila complements the efficacy of PD1 therapy in MAFLD-related hepatocellular carcinoma.

Cell Rep Med

December 2024

Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China; State Key Laboratory of Chemical Biology and Drug Discovery, The Hong Kong Polytechnic University, Hong Kong SAR, China; Research Institute for Future Food, The Hong Kong Polytechnic University, Hong Kong SAR, China. Electronic address:

Immune checkpoint inhibitors are not effective for metabolic dysfunction-associated fatty liver disease (MAFLD)-hepatocellular carcinoma (HCC) patients, and identifying the key gut microbiota that contributes to immune resistance in these patients is crucial. Analysis using 16S rRNA sequencing reveals a decrease in Akkermansia muciniphila (Akk) during MAFLD-promoted HCC development. Administration of Akk ameliorates liver steatosis and effectively attenuates the tumor growth in orthotopic MAFLD-HCC mouse models.

View Article and Find Full Text PDF

Pancreatic cancer is the third leading cause of cancer-related mortality in the United States, with rising incidence and mortality. The receptor for advanced glycation end products (RAGE) and its ligands significantly contribute to pancreatic cancer progression by enhancing cell proliferation, fostering treatment resistance, and promoting a pro-tumor microenvironment via activation of the nuclear factor-kappa B (NF-κB) signaling pathways. This study validated pathway activation in human pancreatic cancer and evaluated the therapeutic efficacy of TTP488 (Azeliragon), a small-molecule RAGE inhibitor, alone and in combination with radiation therapy (RT) in preclinical models of pancreatic cancer.

View Article and Find Full Text PDF

The expression of BHLHE22 in endometrial carcinoma: Associations with mismatch repair protein expression status, tumor-infiltrating immune cells, programmed death-ligand 1 and clinical outcomes.

Taiwan J Obstet Gynecol

January 2025

Department of Pathology, Shuang Ho Hospital, Taipei Medical University, New Taipei City, 23561, Taiwan; Department of Pathology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, 11031, Taiwan. Electronic address:

Objective: Endometrial cancer (EC) shows substantial heterogeneity in their immune microenvironment. BHLHE22 is consistently hypermethylated in EC and high expression of BHLHE22 is likely to be immunosuppressive in the tumor microenvironment. Herein, we evaluated expression of BHLHE22, programmed cell death ligand-1 (PD-L1), CD8, CD68 and mismatch repair proteins in EC.

View Article and Find Full Text PDF

The advent of immunotherapy represents a significant breakthrough in cancer treatment, with immune checkpoint inhibitors (ICIs) targeting PD-1 and CTLA-4 demonstrating remarkable therapeutic efficacy. However, patient responses to immunotherapy vary significantly, with immunosuppression within the tumor microenvironment (TME) being a critical factor influencing this variability. Immunosuppression plays a pivotal role in regulating cancer progression, metastasis, and reducing the success rates of immunotherapy.

View Article and Find Full Text PDF

Nanomedicine-unlocked radiofrequency dynamic therapy dampens incomplete radiofrequency ablation-arised immunosuppression to suppress cancer relapse.

Biomaterials

January 2025

Department of Laboratory Medicine and Department of Ultrasound, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, No. 32, West Second Section, First Ring Road, Chengdu, 610072, Sichuan, China. Electronic address:

Incomplete radiofrequency ablation (iRFA) not only leaves residual tumor, but also render the residual tumor highly self-adaptable and immunosuppressive, consequently expediting residual tumor progression including relapse. To address it, radiofrequency dynamic therapy (RFDT) with identical trigger (namely radiofrequency) has been established and enabled by polyethylene glycol (PEG)-modified Fe-based single atom nanozyme (P@Fe SAZ). P@Fe SAZ can respond to radiofrequency field to produce reactive oxygen species (ROS), attaining the nanomedicine-unlocked low-temperature RFDT.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!