Alkaline Membranes toward Electrochemical Energy Devices: Recent Development and Future Perspectives.

ACS Cent Sci

Key Laboratory of Precision and Intelligent Chemistry, Collaborative Innovation Centre of Chemistry for Energy Materials, School of Chemistry and Material Science, University of Science and Technology of China, Hefei 230026, P.R. China.

Published: August 2023

Anion-exchange membranes (AEMs) that can selectively transport OH, namely, alkaline membranes, are becoming increasingly crucial in a variety of electrochemical energy devices. Understanding the membrane design approaches can help to break through the constraints of undesired performance and lab-scale production. In this Outlook, the research progress of alkaline membranes in terms of backbone structures, synthesis methods, and related applications is organized and discussed. The evaluation of synthesis methods and description of membrane stability enhancement strategies provide valuable insights for structural design. Finally, to accelerate the deployment of relevant technologies in alkaline media, the future priority of alkaline membranes that needs to be addressed is presented from the perspective of science and engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10450879PMC
http://dx.doi.org/10.1021/acscentsci.3c00597DOI Listing

Publication Analysis

Top Keywords

alkaline membranes
16
electrochemical energy
8
energy devices
8
synthesis methods
8
alkaline
5
membranes electrochemical
4
devices development
4
development future
4
future perspectives
4
perspectives anion-exchange
4

Similar Publications

The development of highly active and stable cathodes in alkaline solutions is crucial for promoting the commercialization of anion exchange membrane (AEM) electrolyzers, yet it remains a significant challenge. Herein, we synthesized atomically dispersed CoP moieties (CoP-SSC) immobilized on ultrathin carbon nanosheets via a phosphidation exfoliation strategy at medium temperature. The thermodynamic formation process of the Co-P moieties was elucidated using X-ray absorption spectroscopy (XAS) and theoretical calculations.

View Article and Find Full Text PDF

Melatonin (MT) is a crucial hormone that controls and positively regulates plant growth under abiotic stress, but the biochemical and physiological processes of the combination of melatonin seed initiation and exogenous spray treatments and their effects on maize germination and seedling salt tolerance are not well understood. Consequently, in this research, we utilized the maize cultivars Zhengdan 958 (ZD958) and Demeiya 1 (DMY1), which are extensively marketed in northeastern China's high-latitude cold regions, to reveal the modulating effects of melatonin on maize salinity tolerance by determining the impacts of varying concentrations of melatonin on maize seedling growth characteristics, osmoregulation, antioxidant systems, and gene expression. The findings revealed that salt stress (100 mM NaCl) significantly inhibited maize seed germination and seedling development, which resulted in significant increases in the HO and O content and decreases in the antioxidant enzyme activity and photosynthetic pigment content in maize seedlings.

View Article and Find Full Text PDF

The Possible Crystallization Process in the Origin of Bacteria, Archaea, Viruses, and Mobile Elements.

Biology (Basel)

December 2024

Division of Biochemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University, Sendai 981-8558, Japan.

We propose a hypothesis for the simultaneous emergence of bacteria, archaea, viruses, and mobile elements by sequential and concrete biochemical pathways. The emergence process can be considered analogous to crystallization, where genetic and biochemical systems stabilize as organisms evolve from their common ancestor, the LUCA, which was a non-free-living pool of single operon type genomes including double-stranded (ds) DNA at an ancient submarine alkaline vent. Each dsDNA operon was transcribed by different systems in σ, TFIIB, or TBP genomes.

View Article and Find Full Text PDF

Large-Area Clay Composite Membranes with Enhanced Permeability for Efficient Dye/Salt Separation.

Membranes (Basel)

January 2025

Key Laboratory of Ocean Energy Utilization and Energy Conservation of Ministry of Education, School of Energy & Power Engineering, Dalian University of Technology, Dalian 116024, China.

The escalating discharge of textile wastewater with plenty of dye and salt has resulted in serious environmental risks. Membranes assembled from two-dimensional (2D) nanomaterials with many tunable interlayer spacings are promising materials for dye/salt separation. However, the narrow layer spacing and tortuous interlayer transport channels of 2D-material-based membranes limit the processing capacity and the permeability of small salt ions for efficient dye/salt separation.

View Article and Find Full Text PDF

Polyelectrolyte nanofiltration membranes for base separation and recovery.

Water Res

January 2025

Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37205, USA; Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37205, USA. Electronic address:

Nanofiltration (NF) membranes have the potential to significantly advance resource recovery efforts where monovalent/divalent ion separation is critical, but their utilization is limited by inadequate stability under extreme conditions. "Base separation"-i.e.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!