A new Rothamsted long-term field experiment for the twenty-first century: principles and practice.

Agron Sustain Dev

Protecting Crops and the Environment, Rothamsted Research, West Common, Harpenden, , AL5 2JQ Hertfordshire UK.

Published: August 2023

Unlabelled: Agriculture faces potentially competing societal demands to produce food, fiber and fuel while reducing negative environmental impacts and delivering regulating, supporting and cultural ecosystem services. This necessitates a new generation of long-term agricultural field experiments designed to study the behavior of contrasting cropping systems in terms of multiple outcomes. We document the principles and practices of a new long-term experiment of this type at Rothamsted, established at two contrasting sites in 2017 and 2018, and report initial yield data at the crop and system level. The objective of the Large-Scale Rotation Experiment was to establish gradients of system properties and outcomes to improve our fundamental understanding of UK cropping systems. It is composed of four management factors-phased rotations, cultivation (conventional vs reduced tillage), nutrition (additional organic amendment vs standard mineral fertilization) and crop protection (conventional vs smart crop protection). These factors were combined in a balanced design resulting in 24 emergent cropping systems at each site and can be analyzed at the level of the system or component management factors. We observed interactions between management factors and with the environment on crop yields, justifying the systems level, multi-site approach. Reduced tillage resulted in lower wheat yields but the effect varied with rotation, previous-crop and site. Organic amendments significantly increased spring barley yield by 8% on average though the effect again varied with site. The plowed cropping systems tended to produce higher caloric yield overall than systems under reduced tillage. Additional response variables are being monitored to study synergies and trade-offs with outcomes other than yield at the cropping system level. The experiment has been established as a long-term resource for inter-disciplinary research. By documenting the design process, we aim to facilitate the adoption of similar approaches to system-scale agricultural experimentation to inform the transition to more sustainable cropping systems.

Supplementary Information: The online version contains supplementary material available at 10.1007/s13593-023-00914-8.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449994PMC
http://dx.doi.org/10.1007/s13593-023-00914-8DOI Listing

Publication Analysis

Top Keywords

cropping systems
16
reduced tillage
12
system level
8
crop protection
8
management factors
8
cropping
6
systems
6
rothamsted long-term
4
long-term field
4
experiment
4

Similar Publications

Forage crop rotations including grasslands, common in dairy systems, are known to ensure good productivity and limit the decrease of soil organic matter frequently observed in permanent arable land. A dataset was built to compile data from the Kerbernez long-term experiment, conducted in Brittany(France) from 1978 to 2005. This experiment compared the effect of different forage crop rotations fertilized with ammonium nitrate and/or slurry, with or without grassland, on forage production (quantity, quality) and changes in soil physio-chemical characteristics.

View Article and Find Full Text PDF

Background: Wheat-maize cropping systems in semi-arid regions are expected to be affected by climate change in the future, which is alarming for global food security, environmental sustainability and socioeconomic development. Therefore, management practices like optimized plant geometry and fertilization need to be explored to counter these expected threats. To do this, the APSIM model was calibrated using 5-year data (from 2017/2018 to 2022) regarding yield, biomass, plant height, emergence, anthesis and crop maturity of wheat and maize from farmer fields.

View Article and Find Full Text PDF

Bacterial wilt caused by Ralstonia solanacearum is a devastating disease affecting a great many crops including peanut. The pathogen damages plants via secreting type Ш effector proteins (T3Es) into hosts for pathogenicity. Here, we characterized RipAU was among the most toxic effectors as ΔRipAU completely lost its pathogenicity to peanuts.

View Article and Find Full Text PDF

This study evaluated carcass weight and physicochemical properties of loin and leg meat parts of Saanen castrated goats (n = 4) reared by grazing for 5 months in an abandoned rice field with concentrate supplements, comparing with meat of goats (n = 4) reared by confined feeding with grass silage and concentrate. Carcass and meat part weights of goats in the grazing group were lower (p < 0.01) than confined group.

View Article and Find Full Text PDF

Background: Incorporating organic manure improves soil properties and crop productivity. A long-term study started in October 1967 examined the effects of farmyard manure and nitrogen fertilization on the soil at key growth stages of pearl millet in a pearl millet-wheat cropping system over its 51st cycle.

Results: Applying 15 Mg of farmyard manure (FYM) per hectare in both growing seasons significantly boosted soil organic carbon (SOC), dissolved organic carbon (DOC), and key nutrients compared to one-season application.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!