Genomic analysis of Tibetan ground tits identifies molecular adaptations associated with cooperative breeding.

Curr Zool

Department of Ecology, Tibetan Centre for Ecology and Conservation at Wuhan University-Tibet University, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Wuhan University, Wuhan 430072, China.

Published: October 2023

Cooperative breeding is a sophisticated altruistic social behavior that helps social animals to adapt to harsh environments. The Tibetan ground tit, , is a high-altitude bird endemic to the Tibetan plateau. Recently, it has become an exciting system for studying the evolution of facultative cooperative breeding. To test for molecular adaptations associated with cooperative breeding, we resequenced the whole genome of ground tits from 6 wild populations that display remarkable variation in the frequency of cooperative breeding. Population structure analyses showed that the 6 populations were divided into 4 lineages, which is congruent with the major geographical distribution of the sampling sites. Using genome-wide selective sweep analysis, we identified putative positively selected genes (PSGs) in groups of tits that displayed high and low cooperative breeding rates. The total number of PSGs varied from 146 to 722 in high cooperative breeding rate populations, and from 272 to 752 in low cooperative breeding rate populations. Functional enrichment analysis of these PSGs identified several significantly enriched ontologies related to oxytocin signaling, estrogen signaling, and insulin secretion. PSGs involved in these functional ontologies suggest that molecular adaptations in hormonal regulation may have played important roles in shaping the evolution of cooperative breeding in the ground tit. Taken together, our study provides candidate genes and functional ontologies involved in molecular adaptations associated with cooperative breeding in Tibetan ground tits, and calls for a better understanding of the genetic roles in the evolution of cooperative breeding.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449426PMC
http://dx.doi.org/10.1093/cz/zoac067DOI Listing

Publication Analysis

Top Keywords

cooperative breeding
44
molecular adaptations
16
tibetan ground
12
ground tits
12
adaptations associated
12
associated cooperative
12
cooperative
11
breeding
11
ground tit
8
low cooperative
8

Similar Publications

Microsatellite/SSR dataset: characterization of apple cultivars of the German Fruit Genebank.

Sci Data

January 2025

Julius Kühn Institute (JKI), Federal Research Centre for Cultivated Plants, Institute for Breeding Research on Fruit Crops, Pillnitzer Platz 3a, 01326, Dresden-Pillnitz, Germany.

The German Fruit Genebank is a decentralized network focused on coordinating various germplasm collections across Germany to conserve and utilize the genetic resources of native fruit species. This aim emphasizes the necessity of trueness-to-type validation of genetic resources based on pomological and molecular characteristics. Between 2009 and 2021, multiple projects were undertaken to create an inventory of the apple (Malus ssp.

View Article and Find Full Text PDF

Genome-wide identification and functional roles relating to anthocyanin biosynthesis analysis in maize.

BMC Plant Biol

January 2025

Research Institute of Biology and Agriculture, School of Chemistry and Biological Engineering, Shunde Innovation School, Zhongzhi International Institute of Agricultural Biosciences, University of Science and Technology Beijing, Beijing, 100083, China.

Background: Anthocyanin is an important class of water-soluble pigments that are widely distributed in various tissues of plants, and it not only facilitates diverse color changes but also plays important roles in various biological processes. Maize silk, serving as an important reproductive organ and displaying a diverse range of colors, plays an indispensable role in biotic resistance through its possession of anthocyanin. However, the copy numbers, characteristics, and expression patterns of genes involved in maize anthocyanin biosynthesis are not fully understood.

View Article and Find Full Text PDF

GGCX promotes Eurasian avian-like H1N1 swine influenza virus adaption to interspecies receptor binding.

Nat Commun

January 2025

National Key Laboratory of Agricultural Microbiology, College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, Hubei, People's Republic of China.

The Eurasian avian-like (EA) H1N1 swine influenza virus (SIV) possesses the capacity to instigate the next influenza pandemic, owing to its heightened affinity for the human-type α-2,6 sialic acid (SA) receptor. Nevertheless, the molecular mechanisms underlying the switch in receptor binding preferences of EA H1N1 SIV remain elusive. In this study, we conduct a comprehensive genome-wide CRISPR/Cas9 knockout screen utilizing EA H1N1 SIV in porcine kidney cells.

View Article and Find Full Text PDF

Identification of , a Maize NAC Family Transcription Factor with Multiple Transcripts Conferring Drought Tolerance in .

Plants (Basel)

December 2024

State Key Laboratory of Crop Gene Resources and Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.

Drought is one of the most serious environmental stresses affecting crop production. NAC transcription factors play a crucial role in responding to various abiotic stresses in plants. Here, we identified a maize NAC transcription factor, , between drought-tolerant and drought-sensitive inbred lines through RNA-seq analysis and characterized its function in .

View Article and Find Full Text PDF

Porcine latissimus dorsi muscle (LDM) is a crucial source of pork products. Meat quality indicators, such as the proportion of muscle fibers and intramuscular fat (IMF) deposition, vary during the growth and development of pigs. Numerous studies have highlighted the heterogeneous nature of skeletal muscle, with phenotypic differences reflecting variations in cellular composition and transcriptional profiles.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!