A limited number of studies have directly examined the effects of liposomal encapsulated phytochemicals and their anti-obesity effects in adults. This study aimed to summarize the evidence on the effect of liposomal encapsulated phytochemicals and their role in regulating major pathways involved in the anti-obesity mechanism. A systematic search was performed using several search engines like Science Direct, Google Scholar, and other online journals, focusing on laboratory research, systematic reviews, clinical trials, and meta-analysis that focused on liposomal encapsulated phytochemicals with anti-obesity properties, and followed the preferred reporting terms for this systematic review. An initial search provided a result of 1810 articles, and 93 papers were selected after the inclusion and exclusion criteria. Very few studies have been conducted on the liposomal encapsulation of phytochemicals or its synergistic study to combat obesity; hence this review paves the way for future obesity research and is mainly helpful for the pediatric obesity population. Liposomal encapsulation of phytochemicals has improved the efficiency of freely administered phytochemicals. Targeted delivery improved drug utilization and regulated the anti-obesity pathways. PPARƔ is a major therapeutic target for obesity as it inhibits adipocyte differentiation and maintains energy homeostasis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10449732 | PMC |
http://dx.doi.org/10.1007/s13205-023-03740-7 | DOI Listing |
Bioorg Chem
December 2024
Universidade da Coruña, CICA - Centro Interdisciplinar de Química e Bioloxía and Departamento de Química, Facultad de Ciencias, Campus A Zapateira, 15071 A Coruña, Spain. Electronic address:
In this study, a series of BODIPY dyes were synthesized, containing various substituents at meso position. Further functionalization of the BODIPY framework at C2 and C2-C6 position(s) by palladium-catalysed cross-coupling reactions using organoindium reagents (RIn) was efficiently assessed, starting from C2(6)-halogenated BODIPYs, and their optical properties were measured. The cytotoxicity of BODIPY dyes on SH-SY5Y neuronal cells by MTT assay showed that those compounds bearing thien-2-yl and benzonitrile moieties at meso position, exhibited great efficiency in maintaining cell viability under all tested conditions (up to 50 µM for 24 h and 48 h).
View Article and Find Full Text PDFJ Mater Chem B
January 2025
College of Chemistry and Materials Science, Chemical Biology Key Laboratory of Hebei Province, Hebei Research Center of the Basic Discipline of Synthetic Chemistry, Hebei University, Baoding, 071002, P. R. China.
Delivery nanosystems have been widely developed to improve the efficacy of chemotherapy. However, their performance regarding the non-specific leakage of drugs remained unsatisfactory. Herein, gold nanocages (AuNCs) were used as carriers and thermo-sensitive liposome (TSL) as a protective shell to design a camptothecin (CPT)-loaded delivery nanosystem (AuNCs/CPT@TSL) for photothermal-modulated drug release.
View Article and Find Full Text PDFJ Drug Target
January 2025
School of Pharmacy, Wannan Medical College, Wuhu, China.
Biomaterials
December 2024
Key Laboratory of Biomaterials of Guangdong Higher Education Institutes, Department of Biomedical Engineering, Jinan University, Guangzhou, 510632, China. Electronic address:
Owing to the excellent stability, anticancer activity and immunogenicity, peroxynitrite (ONOO) has been gained enormous interests in cancer therapy. Nevertheless, precise delivery and control release of ONOO in tumors remains a big challenge. Herein, B16F10 cancer cell membrane/liposome hybrid membrane (CM-Lip) based biomimetic nanodrug with high-efficient tumor-homing and NIR-II laser controlled ONOO boost properties was designed for melanoma treatment.
View Article and Find Full Text PDFFront Oncol
December 2024
Experimental Center for Teaching, Hebei Medical University, Shijiazhuang, Hebei, China.
Lung cancer, as a serious threat to human health and life, necessitating urgent treatment and intervention. In this study, we prepared hyaluronic acid (HA)-targeted topotecan liposomes for site-specific delivery to tumor cells. The encapsulation efficiency, stability, chemical structure, and morphology of HA-targeted topotecan liposomes were studied, and the release properties, cellular uptake capacity, and therapeutic efficacy of topotecan were further investigated.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!