In recent years, with the increasing scarcity of fossil resources and the worsening environmental pollution, the effective utilization of wood and plastic waste has become a critical issue. In this paper, propylene glycol (PG) was used as an alcoholysis agent to degrade waste poly(ethylene terephthalate) (PET), and unsaturated polyester (UPR) was synthesized by the polycondensation reaction. The Chinese fir was modified by chemical impregnation to obtain a new type of waste PET-based wood-plastic composites. It exhibits a compressive strength of about 107 MPa and a water absorption of less than 20%. These results highlight the outstanding modification effect on fir, demonstrating excellent mechanical properties and corrosion resistance. This study presents a green and efficient method for the preparation of wood-plastic composites and the recycling of waste PET, providing promising solutions for sustainable resource utilization and environmental protection.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448690 | PMC |
http://dx.doi.org/10.1021/acsomega.3c03805 | DOI Listing |
Molecules
January 2025
School of Chemical Sciences, Dublin City University, D09 E432 Dublin, Ireland.
The textile industry's rapid growth and reliance on synthetic fibres have generated significant environmental pollution, highlighting the urgent need for sustainable waste management practices. Chemical recycling offers a promising pathway to reduce textile waste by converting used fibres into valuable raw materials, yet technical challenges remain due to the complex compositions of textile waste, such as dyes, additives, and blended fabrics.
View Article and Find Full Text PDFMolecules
January 2025
Department of Chemical Science and Technologies, University of Rome Tor Vergata, 00133 Rome, Italy.
Plastics are widely produced due to their stability and ease of manufacturing, but many of them quickly become a waste, breaking down into microplastics and nanoplastics. While methods for the identification and characterization of plastic particles are well consolidated, the small size of nanoplastics presents challenges for their detection and analysis. Furthermore, due to the difficulty of identifying nanoplastics, analytical studies concerning their effect on cells and a comprehensive spectroscopic characterization are still lacking.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Center for Advanced Technologies, Adam Mickiewicz University in Poznań, Uniwersytetu Poznańskiego 10, 61-614 Poznań, Poland.
Recycling end-of-life wind turbines poses a significant challenge due to the increasing number of turbines going out of use. After many years of operation, turbines lose their functional properties, generating a substantial amount of composite waste that requires efficient and environmentally friendly processing methods. Wind turbine blades, in particular, are a problematic component in the recycling process due to their complex material composition.
View Article and Find Full Text PDFJ Environ Manage
January 2025
National Institute for Materials Advancement, Pittsburg State University, Pittsburg, KS, 66762, USA; Department of Chemistry, Pittsburg State University, Pittsburg, KS, 66762, USA. Electronic address:
The increase in plastic waste has evolved into a severe environmental crisis, which requires innovative recycling technologies to repurpose used plastic with adequate environmental protection. This review highlights the urgent need for innovative approaches to the treatment and degradation of post-use plastics. It investigates the promising role of biofilms in the biodegradation of polymers, especially for polymers such as polyethylene terephthalate (PET), polyurethane (PU), and polyethylene (PE).
View Article and Find Full Text PDFChemistry
January 2025
Centre CEA Paris-Saclay: Commissariat a l'Energie Atomique et aux Energies Alternatives Centre de Saclay, IRAMIS Institute, CEA - Saclay, 91190, Gif-Sur-Yvette, FRANCE.
The Schwartz's reagent Cp2Zr(H)Cl is a well known stoichiometric reagent for the reduction of unsaturated organic molecules but it has rarely been used in catalytic transformations. Herein, we describe the reduction of a variety of organic carbonates using the catalyst Cp2Zr(H)Cl in combination with Me(MeO)2SiH (DMMS) as reductant. This method was further applied to the reductive depolymerization of some polycarbonate materials and yielded silylated alcohols and diols in mild conditions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!