A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Green Prospective Approach of Chromium Zinc Oxide Nanoparticles for Highly Ultrasensitive Electrochemical Detection of Anti-hypotensive Medication in Various Matrices. | LitMetric

A highly ultrasensitive sensor that relied on Cr/ZnO-NPs was developed to detect etilefrine hydrochloride (ETF) in different matrices via a particular green voltammetric technique. The X-ray diffraction pattern showed the nanomaterials of the polycrystalline hexagonal structure. The energy-dispersive X-ray spectrum approved the presence of Cr inside the host zinc oxide framework. The morphological and topological characteristics were visualized using transmission electron microscopy and atomic force microscopy micrographs describing the nanoparticles in spherical-like shape with large-surface area. The energy gap () was evaluated from transmittance ( %) and reflectance ( %) spectra within the visible region. The optimization study indicated that the Cr/ZnO-NP/CPE sensor has high sensitivity, thanks to the distinctive physical and chemical properties of the fabricated electrode. A new approach showed a great selectivity for determining ETF in different matrices in the presence of other interferents like levodopa. Under optimal circumstances, the square-wave voltammetry revealed a linear response to ETF from 0.01 to 10 μmol L ( = 0.9996) with quantification and detection limits of 9.11 and 2.97 nmol L, respectively. Finally, the proposed approach was effectively applied to estimate ETF in pharmaceutical dosage forms and biological fluids using simple, accurate, and selective electrochemical electrode. The greenness profile assessment of the developed method was performed using the Eco-Scale and green analytical procedure index. These tools indicated that the proposed method is an eco-friendly technique for the determination of ETF in different matrices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10448688PMC
http://dx.doi.org/10.1021/acsomega.3c02381DOI Listing

Publication Analysis

Top Keywords

etf matrices
12
zinc oxide
8
highly ultrasensitive
8
etf
5
green prospective
4
prospective approach
4
approach chromium
4
chromium zinc
4
oxide nanoparticles
4
nanoparticles highly
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!